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CHAPTER ONE: Background 

I. Introduction 

The loss of blood flow to the brain is termed ischemia and the subsequent resumption of 

blood flow is termed reperfusion.  Brain ischemia and reperfusion (I/R) occurs primarily 

following resuscitation from cardiac arrest and/or stroke and presents one of the most significant 

clinical challenges.  At present, there are no clinically effective pharmacologic interventions to 

halt brain damage following I/R.  The major Aim of this dissertation will be to investigate 

possible mechanisms involved in neuron death following brain I/R, which may potentially lead 

to the development of effective therapies. 

A second major facet of this dissertation will be to address the issue of stroke and 

diabetes.  It is very well established clinically that stroke outcome in diabetic patients is 

significantly worse than in non-diabetic patients. Diabetes has negative effects throughout the 

whole body and multiple different causes have been attributed to worsened stroke outcome. As 

both diabetes and ischemia are stress to cells, I hypothesize that the worsened damage following 

ischemic stroke in diabetes is due to a cumulative or additive effect of each condition on 

neuronal stress responses. 

Neuronal death following brain I/R injury is a result of a variety of damage pathways5.  

The focus of the work here is on a specific aspect of I/R injury: the persistent inhibition of 

protein synthesis, or translation arrest (TA), which occurs in neurons in response to I/R injury.  

TA is of significance because, as I discuss in detail below, it correlates with neuronal death1,2.  

The purpose of this Dissertation is to investigate mechanisms of TA in the brain following focal 

ischemia, with and without diabetes.  There has been extensive research on persistent TA in 

global models of brain I/R, whereas research in focal ischemia, as occurs in stroke, has not been 

as extensive.  Therefore, there is a need to further study mechanisms of TA in the focal model.  



www.manaraa.com

2 

 

After a thorough literature review, I have found no studies of the possible role of TA in worsened 

stroke outcome in diabetics, making this line of investigation completely novel. 

Below, I will review our current understanding of I/R brain injury and how diabetes 

worsens outcome.  I will discuss clinical outcomes, the major mechanisms, and especially focus 

on TA following brain I/R.  The most current ideas on TA link it to intracellular stress responses 

and the formation of subcellular particles involved in mRNA metabolism such as stress granules 

and mRNA granules.  My Background discussion will introduce my hypotheses about 

mechanisms of prolonged TA following focal brain I/R and the possible effect of diabetes on 

these mechanisms.  In subsequent chapters I will present my study designs and results.  The 

Dissertation will close with a chapter discussing the significance of my finding in light of the 

existent literature and in terms of new ideas about cell injury dynamics that are being developed 

in our laboratory. 

II. Brain Ischemia and Reperfusion Defined 

Ischemia is a significant decrease or cessation of blood flow to the brain, and reperfusion 

is resumption of normal or near normal blood flow.  The brain is the most sensitive organ to I/R 

injury.  I/R brain injury takes two major forms: global and focal.  Global ischemia is a cessation 

of blood flow to the entire brain and occurs in humans during drowning or during cardiac arrest.  

Focal ischemia is ischemia of a localized region of the brain and is due to many possible causes 

such as artery occlusion, ruptured hematomas, gliomas, etc. Stroke is the focal ischemia that 

most often occurs in humans.  Both focal and global ischemias are lethal to neurons and there is 

great clinical interest in determining the mechanisms of injury so as to be able to treat these 

conditions. 

III. Focal Ischemia and Reperfusion Brain Injury 

Stroke is the most common form of focal ischemic insult to the brain and is the third most 
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common cause of death and disability in the United States.3  Ischemic stroke accounts for 

approximately 80% of all strokes and results from an embolic or thrombotic occlusion of a major 

cerebral artery or its branches.  This is most often the middle cerebral artery (MCA).  Occlusion 

of a specific blood vessel results in injury to the corresponding volume of brain tissue fed by the 

occluded vessel.  Loss of the brain functions associated with the ischemic brain volume occurs 

rapidly.  Damage to the brain results from either a transient ischemic attack, where neuronal 

function will be restored ~24 hrs after the development of symptoms4, or from a stroke, where 

neuronal function is lost forever due to irreversible death of the brain tissue. 

Unlike global ischemia, which leads to neuronal cell death in very specific neuron 

populations, there is a morphological complexity to stroke injury.5  Focal ischemia produces a 

mass of damaged brain tissue termed the infarct.  Damage is expressed as the volume of the 

infarct.  A necrotic core forms at the site of the occlusion, consisting of dead brain tissue 

including neurons, glia and vascular tissue.  Surrounding the core is a penumbra characterized by 

hypoperfusion and other metabolic and functional disturbances.  If the vessel remains occluded, 

an increasing number of cells, further away from the core, will eventually be affected. These 

cells define the penumbral region, and their death occurs many hours, days or in some cases, 

months, after the initial ischemia.  Penumbral neurons that die after the ischemia are 

distinguished from the immediate necrosis of the core by the term “delayed neuronal death” 

(DND).6   

In permanent ischemia, the initial infarct is seen after 3-12 hrs.7  The infarct begins in the 

core but reaches close to its maximal size, which includes core and penumbra, 8-24 hrs after the 

onset of ischemia.  The infarct continues to grow after 1 day, so that between 24 and 72 hrs it can 

grow by approximately 30%.8  Thus damage continues to increase in penumbral regions.  

Different durations of temporary ischemia lead to graded involvement of different regions in the 
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infarct as measured after 1-2 days reperfusion.9  Studies have demonstrated that 1 hr of ischemia 

leads to infarct in the core, with infarct in the penumbra developing fully within 2-3 hr of 

temporary occlusion.10  As little as 30 minutes of transient ischemia leads to an infarct in the core 

region, but this only first appears after 3 days and takes 2-3 weeks to mature to its full size.11   

Individual cell death within the infarct develops slowly, but more rapidly than delayed 

cell death in global ischemia.  Cell death first becomes significant at approximately 6-12 hrs in 

the core of the lesion, with a major increase between these two time points.  At 12 and 24 hrs, 

approximately 80% of the neurons died.12  The final stage of infarct development in focal 

ischemia is pan-necrosis, in which neuronal death is accompanied by glial and vascular cell 

death and loss of cellular elements.5  

To conclude, development of the necrotic infarct occurs within a few hours of focal 

ischemia, but matures over up to several days, drawing in penumbral regions and resulting in a 

larger mass of dead brain tissue.  

IV. Diabetes and Worsened Stroke Outcome 

A. Diabetes Defined 

Diabetes mellitus is a metabolic disorder characterized with chronic degenerative changes 

in various tissues, with the two major forms being type 1, insulin-dependent, and type 2, 

noninsulin-dependent diabetes.  In the United States, 25.8 million people, or 8.3 % of the 

population, have diabetes, with 1.9 million new cases of diabetes diagnosed in people aged 20 

years or older in 2010.13  Type 2 diabetes accounts for ~90% of the population diagnosed with 

diabetes in the United States.  Diabetes is not just an epidemic of the US but is considered a 

global health problem, affecting over 340 million people worldwide.14  

Type 1 diabetes is an autoimmune disorder characterized by the destruction of pancreatic 

islet cells, including the insulin-producing beta cells.  However, many factors contribute to the 
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onset of type-2 diabetes, including genetic, lifestyle and dietary.  Type 2 diabetes is characterized 

by insulin resistance, relative insulin deficiency at later stages, and excessive hepatic glucose 

production, all leading to hyperglycemia.  The primary events are believed to be an initial deficit 

in insulin secretion and, in many patients, relative insulin deficiency in association with 

peripheral insulin resistance15.  Dysfunction of pancreatic beta cells, which produce insulin, is 

necessary for the development of the disease, but the nature of the primary beta cell defect is still 

unknown.  

Initiation of the insulin response depends upon the transmembranous transport of glucose 

and coupling of glucose to the glucose sensor on the beta cell.  The glucose/glucose sensor 

complex then induces an increase in glucokinase by stabilizing the protein and impairing its 

degradation.  The induction of glucokinase serves as the first step in linking intermediary 

metabolism with the insulin secretory apparatus.  Glucose transport in beta cells of type 2 

diabetes patients appears to be greatly reduced, thus shifting the control point for insulin 

secretion from glucokinase to the glucose transport system16.  Other defects in beta cell function 

in type 2 diabetes include defective glucose potentiation in response to substances that cause 

non-glucose-dependent insulin secretion, asynchronous insulin release, and a decreased 

conversion of proinsulin to insulin.   

A hallmark of type 2 diabetes is increased secretion of insulin, hyperinsulinemia, early 

on.  In later stages, because of the chronic insulin resistance in muscle and adipose cells and 

impaired beta cell function, there is a loss of the early insulin release in response to 

hyperglycemic stimuli17.  Thus, when insulin binds to its receptors, it is not able to bring about a 

response of increased glucose utilization in these cells.  With the impaired insulin production and 

secretion, glucose synthesis and output from the liver increases.  Thus, the liver in type 2 

diabetes is programmed to both overproduce and under use glucose. 
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Furthermore, in addition to the ineffectiveness of insulin in inhibiting glucose production 

in the liver, free fatty acids are deposited into tissues and inefficiently stored in adipose tissue, 

resulting in elevated circulating levels.  The elevated FFA levels also lend to the increased 

glucose production by the liver18. The ensuing glucose toxicity leads to a multitude of 

disturbances in various tissues, disrupting homeostasis throughout the body.  Chronic 

hyperglycemia and hyperlipidemia can exert deleterious effects on beta cell function.  Over time, 

both of these phenomena contribute to the progressive deterioration of glucose homeostasis 

characteristic of this disease and various long-term complications.  The long-term complications 

markedly increase the susceptibility to cardiovascular disease, including ischemic stroke. 

B. Impact of Diabetes on Stroke Occurrence and Recovery 

People with diabetes are two to four times more likely to have an atherotherombotic 

stroke than people who do not have the disease13.  Diabetes particularly affects the risk of stroke 

among younger individuals, with a more than 10-fold increase risk of stroke in the stroke 

population younger than 55 years13.  It has been demonstrated that diabetes is associated with 

vascular alterations, including cerebrovascular atherosclerosis and other abnormalities19.  There 

is compromised collateral flow throughout arterial networks, leading to a decrease in blood flow 

to the brain that further complicates stroke.  In addition, people with diabetes often have high 

blood pressure, which can also cause abnormalities in the small blood vessels of the brain and 

contribute to the increased susceptibility to stroke.  Because diabetes has the tendency to exert 

such deleterious effects on the vascular system, these factors render diabetics, at least in part, to 

be more susceptible to ischemic brain damage and worsened outcome following stroke. 

In order to investigate the impact of diabetes on stroke, neuronal cell death was assessed 

following permanent focal ischemia using the middle cerebral artery occlusion (MCAO) 

technique.  The infarct core includes the striatum and overlying cortex, areas directly fed by the 
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MCA.  Areas peripheral to the core encompass the piriformis and parietal cortex.20  However, the 

hippocampus did not display an infarct and is therefore not considered to be in the core.  As 

explained above, the current understanding is that neuronal cell death is due to necrosis 

occurring in the core and to DND in the penumbra.21  The core of the focal lesion undergoes 

massive ion and metabolite changes that, by some indicators such as ATP levels and ion 

gradients, appears to recover after transient ischemia.  However, during the reperfusion period, it 

is near impossible to prevent formation of an infarct in the core by any interventions, despite the 

initial appearance of recovery.22 

 In contrast, in the MCAO model, the penumbra can be rescued by many 

interventions5,122, indicating different mechanisms of damage in the two regions.  This is why 

defining the penumbra and the mechanisms by which neurons die in that region is of particular 

interest.  Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was 

used to assess nucleosomal DNA fragmentation in situ in normal and diabetic animals with or 

without MCAO22.   No TUNEL positive cells were found in the cortex of normal animals, 

whereas the diabetic animals did show positive TUNEL staining in the cortical cells.  After 

permanent MCAO, TUNEL positive cells were present in the piriform and parietal cortices in the 

normal animals and were further increased in the diabetic group.  Furthermore, caspase-3 was 

also found to be increased following MCAO in normal animals and was increased above that in 

the diabetic group.22 Caspase 3 activation is most often associated with apoptosis, but in neurons, 

its activation has also been associated with neuronal remodeling that is not associated with cell 

death.23 

These studies demonstrated that focal ischemia produces cell death in the core of the 

infarct and ensuing cell death in the penumbral region, with the amount of cell death being 

augmented by the presence of diabetes.  To consider mechanisms by which diabetes worsens 
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stroke outcome, we first turn to a discussion of the established mechanisms of brain I/R injury.  

V. Established Mechanisms of Brain I/R 

Following focal ischemia, the core is not salvageable.  However, the DND associated 

with the penumbra provides a time window for therapeutic interventions.  Therefore, it is the 

goal of stroke research to understand DND in the penumbra to be able to limit stroke damage to 

only the core infarct. The DND of penumbra is very similar in both time course and mechanisms 

to the DND found in selectively vulnerable neurons after global ischemia, and therefore, findings 

in the global ischemia models are brought to bare on the focal case.  

It needs to be emphasized that, in spite of a very large amount of information (a PubMed 

search of the term “brain ischemia” gives 78,805 papers!), the cell death pathways causing DND 

following I/R injury are not known with certainty. The “acid test” of current knowledge is the 

fact that all pharmacologic clinical trials following either stroke122 or cardiac arrest and 

resuscitation24 have fully failed. Therefore, it is safe to conclude our current knowledge, in spite 

of its volume, is incomplete.  It is anticipated that a full and correct understanding of DND will 

lead to the development of clinically effective therapies.  In the following paragraphs, we review 

(1) the established damage mechanisms associated with I/R injury and (2) the stress response 

expressed by neurons following I/R injury.  

A. Ischemia  

Ischemia, independent of reperfusion, brings about various forms of cell damage, all 

surrounding the rapid loss of ATP, which is secondary to the loss of glucose and oxygen influx 

following cessation of cerebral blood flow.  In the brain, ATP loss most directly affects the 

Na+/K+-ATPase electrogenic pump, accounting for approximately 50% of ATP utilization in the 

neuron.25  Consequently, ATP loss in the brain leads to a series of events known as 

excitotoxicity.   
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1. Excitotoxicity 

Under normal conditions in a neuron, the binding of glutamate to NMDA and AMPA 

receptors causes depolarization of postsynaptic neurons via rapid influx of Na+ and Ca2+.  

Depolarization also induces Ca2+ influx through the voltage gated L- and T- calcium channels. 

This calcium influx is reversed when extra- and intracellular ion concentrations are reset, 

ultimately via the Na+ gradient created by several ATP-dependent Ca2+ pumps.  Also, continued 

glutamate excitability is halted as a result of glutamate reuptake by astroglia, in an ATP 

dependent manner.  

Following ischemia, ATP levels drop in cells because of a lack of delivery of oxygen and 

glucose and a high rate of ATP expenditure in these cells.  ATP levels are 50% of baseline in the 

first min of ischemia, and essentially zero at 4 min ischemia26. Loss of ATP halts the function of 

the Na+-K+-ATPase allowing uncontrolled ion influx, mainly through “leak channels” initially, 

and allowing ions to approach their Nernst equilibria.  The net result of the attempt of ions to 

equilibrate is a net depolarized state in the neuron.  The depolarization results in the release of 

excessive amounts of excitotoxic amino acids, namely glutamate, from presynaptic neurons into 

the extracellular space.27  Glutamate then acts by activation of NMDA and AMPA receptors.  

This leads to an uncontrolled positive feedback loop: net depolarization results in 

neurotransmitter release, the majority of which are excitatory, inducing ligand-gated 

depolarization, which causes further excitatory transmitter release, inducing further 

depolarization.  This feedback continues until releasable transmitter is depleted.  This sequence 

of events is called excitotoxicity. 

Long durations of ischemia will cause such extreme ion equilibration that cells will die 

by bursting due to a net ion influx carrying water by osmotic forces.  However, with moderate 

and clinically relevant ischemia durations, ion influx is not sufficient to burst cells, but leads to a 
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pathologically high cytoplasmic Ca2+ concentration.  Silver and Erecinska  in 1990 demonstrated 

that, during ischemia, intracellular Ca2+ concentration in neurons goes from about 10 nM to 

about 800 nM after 7 min of complete ischemia28.   

During focal ischemia, the impact of intra-ischemic depolarization is not completely 

known.  Previous studies have found that there is a wave-like spread of increased extracellular 

K+ and glutamate from the core of the lesion in a phenomenon known as “spreading 

depression”29.  The frequencies of the depolarizations are halved by either AMPA or NMDA 

antagonists, indicating that glutamate-mediated depolarization contribute at least 50%.30.  The 

evidence linking the development of damage in the penumbra to these depolarizations is 

extensive, but mainly correlative31.  The most convincing direct evidence that these 

depolarizations are damaging came about by using either KCl or electrical stimulation, which 

increased the number of depolarizations by twofold.  This resulted in an increase in the size of 

the infarct and peri-infarct damage by 30-100%31-32.  Based on these findings, the damage caused 

by the induced depolarizations suggests that the endogenous depolarizations are also damaging 

during ischemic conditions.  However, pharmacological targeting, in an effort to more directly 

establish the importance of the depolarizations, has proven to be difficult31. 

The contribution of excitotoxicity to DND has not been resolved.  One study has shown 

significant ultrastructural alterations in post-synaptic densities following I/R that persisted to at 

least 24 hr reperfusion in CA1 compared to dentate gyrus (DG)33.  However, this study failed to 

evaluate these parameters in CA3, which is also well known to have very high excitatory 

transmission, which underlies the development of temporal lobe epilepsy34. Perhaps most 

important, the extracellular levels of excitatory transmitters found in ischemic brain is much less 

than those generated by exogenous application of the transmitters required to generate cell death 

solely by an excitotoxic mechanism35.  Thus, any notion that excitotoxicity is the sole factor in 
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DND has been proven false.  Other lines of evidence suggest that the main contribution of an 

excitotoxic mechanism to DND is to allow a massive dys-regulation of cytoplasmic Ca2+.   

B. Reperfusion Damage Mechanisms 

Reperfusion results in additional damage mechanisms that compound the damage evoked 

during ischemia.  These include: free radical production, lipid peroxidation, nitrosylation, further 

alterations in cellular signaling pathways, and persistent TA.  

1. Free Radicals 

There is substantial evidence that free radical damage (today commonly known as 

reactive oxygen species or ROS) contributes to DND following brain I/R.  One consequence of 

the abnormal calcium influx in neurons during ischemia is a rapid increase in intracellular 

arachidonic acid concentration by Ca2+-activated phospholipases36-37.  Once reperfusion begins, 

the accumulated arachidonic acid can be converted to hydroperoxides by lipoxygenase.  The 

hydroperoxides can participate in lipid peroxidation by Fenton-like reactions38. Thus, oxidative 

damage occurs in reperfused neurons on the membrane as a result of lipid peroxidation39. 

Oxygen supply to ischemic cells is restored with reperfusion.  Oxygen is an essential 

substrate of the enzyme cyclooxygenase which catalyzes the addition of two oxygen molecules 

to arachidonic acid producing prostaglandin G. Prostaglandin G is subsequently peroxidized, 

forming an oxygen radical, superoxide (O2-) and prostaglandin H26. While the prostaglandins are 

known inflammatory mediators, they can also increase in lipid peroxidation in cell membranes 

that will result in changes in lipid permeability and fluidity.  This, in turn, will disrupt the 

functions of receptors, ion channels, and other proteins located on the cell membrane. 

Perturbations within the cell membrane occur as a result of the glutathione depletion during 

ischemia40, resulting in the cell’s inability to recover from damage caused by lipid peroxidation.   

In addition to reactive oxygen species, the oxygen radicals can react with nitric oxide 
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(NO) through a reaction catalyzed by NOS, forming peroxynitrite19, a reactive nitrogen species 

(RNS).  Peroxynitrite, in turn, oxidizes Fe2+ ions resulting in greater lipid peroxidation41.  In 

addition, under ischemic conditions there is a resultant burst of free oxygen radicals and the 

release of pro-apoptotic molecules due to the formation of mitochondrial permeability transition 

pores42. Following ischemia, free radicals are generated during the inflammatory response43. 

In focal ischemia, there is very little free radical change in the core as compared to the 

penumbra; this is in contrast to the ion and metabolite changes that occur.44  Free radical 

production, as measured by hydroxylation of salicylic acid, remained elevated 3 hours after the 

onset of ischemia in the penumbra, and further elevated with the onset of reperfusion.  In 

contrast, there was no increase in the core during 3 hours of ischemia, but there was an increase 

at about 4 hours reperfusion45.  Therefore, core exposure to free radicals during the main periods 

of injury development during ischemia is considered minimal with free radical production 

largely restricted to the penumbra5. 

In addition, studies have definitively shown that free radical and NO production are 

elevated for at least 6-12 h following focal ischemia46.  It has been demonstrated that elevated 

levels of superoxide, in concert with NO production, result in increased peroxynitrite production.  

It has been well established that free radicals are generated during and after both focal and global 

ischemia and conditions that reduce their accumulation should ameliorate damage, if the free 

radicals are in fact damaging.  However, cell death, induced by arachidonate activation, in NB-

104 cells is not inhibited after cells were treated with radical scavengers47. But in the same study, 

cell death induced by lipid hydroperoxides was prevented when treated with radical 

scavengers47.  Despite the apparent connection between oxygen radical formation and lipid 

peroxidation in causing cell death, studies have proven otherwise.  Although the contribution of 

free radical damage to reperfusion injury is significant, it is only part of the picture.  
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C. Inflammation  

Inflammation has been implicated as a secondary injury mechanism following stroke.  A 

growing number of recent investigations have established a critical role for leukocytes in 

bringing about tissue damage after ischemia and reperfusion in stroke.  The vascular endothelium 

promotes inflammation through the upregulation of adhesion molecules like intercellular 

adhesion molecule (ICAM)-1, E-selectin, and P-selectin, that bind to circulating leukocytes and 

facilitate their migration into the CNS48.  Once in the CNS, the production of cytotoxic 

molecules may facilitate cell death.  The macrophage and microglial response to injury may 

either be beneficial by scavenging necrotic debris or detrimental by facilitating cell death in 

neurons that would otherwise recover.   

Using MCAO, several studies have demonstrated that inflammatory events occurring at 

the blood-endothelium interface of cerebral capillaries underlie the resultant ischemic tissue 

damage.  Inflammatory cell adhesion molecules, chemokines, and cytokines have all been 

implicated in the pathogenesis of damage.  Following transient and permanent MCAO, pro-

inflammatory cytokines such as interleukin (IL)-1 and IL-6 act upon the vascular endothelium 

to increase the expression of ICAM-1, P-selectin, and E-selectin, which promote leukocyte 

adherence and accumulation.5  It has been shown that application or overexpression of the IL-1 

receptor antagonist, IL-1r, reduces infarct size49 and blockage of IL-1 converting enzyme 

reduces brain injury through decreased formation of IL-150 

In addition, cell surface receptors called integrins are activated and mediate intracellular 

inflammatory signals.  These inflammatory signals promote leukocyte migration across the 

endothelium and mediate inflammatory cascades resulting in further cerebral damage.  There is 

also an accumulation of neutrophils, which are phagocytotic white blood cells, in infarcted tissue 
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24 h after permanent or temporary focal ischemia51.   Neutrophils have been observed within the 

vessels and the parenchyma of ischemic brain after reperfusion52.  Depletion of neutrophils from 

the circulation using anti-neutrophil antibodies reduces the brain injury associated with ischemia 

and reperfusion53, suggesting a causative, but minor, role for neutrophils in brain injury.  Further 

investigation of the underlying mechanisms of inflammation may play an important role in the 

development of therapeutic treatment of stroke.  

D. Post-Ischemic Translation Arrest 

In 1971, Kleihaus and Hossmann discovered that during reperfusion, protein synthesis 

was inhibited, in spite of return of normal ATP levels54. This post-ischemic translation arrest 

(TA) has proven to be an important observation.  Subsequently research established that: (1) TA 

occurs in all post-ischemic brain regions for at least several hours1, (2) translation recovers in 

surviving brain regions, but not in regions that will die by DND, and (3) 

the TA appeared to involve a defect at the initiation stage of 

translation1.Figure 1: TA after focal ischemia and reperfusion. 

Figure 1 illustrates TA following focal ischemia induced by 

MCAO in a study conducted by Dr. Wulf Paschen2.  In this study, 

following 2 hr MCAO and durations of reperfusion indicated in the 

figure, animals were administered radioactive amino acid, and 

autoradiograms prepared.  Following ischemia, the ipsilateral 

hemisphere showed no protein synthesis in the MCA territory.  In the 

penumbral area of cerebral cortex, a slight recovery occurred at 6 hr 

reperfusion, but by 24 hr reperfusion, the recovery was not sustained and 

incorporation was lower than the 6 hr time point.  The core lesion in the 

basal ganglia never recovered translation because the cells were necrotic. But significantly, 

Figure 1 : TA after 
focal ischemia and 
reperfu-sion. Image 
from2. 
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translation never recovered in the cortical penumbra and these neurons subsequently died.   

VI. Translation Arrest and Brain I/R   

For many years, TA was considered a damage mechanism induced by I/R injury.  

However, continued work in this area has caused a shift in this viewpoint.  Instead of being seen 

as a damage mechanism, TA is now recognized as a marker of protective intracellular stress 

responses, and the persistent TA that correlates with cell death is considered a symptom of a 

dysfunctional stress response on the part of post-ischemic neurons.  What I will do in this section 

is first, discuss what has been discovered about the causes of TA during I/R, and then discuss 

how these discoveries have linked post-ischemic TA with neuronal stress responses.  I will 

discuss the role of TA in the general response of cells to exogenous stressors.  These ideas will 

provide the basis for the dissertation work I proposed. 

Most studies conducted on TA following I/R have used global ischemia models.  

Therefore most of the evidence I will discuss will be based on global models.  TA has been less 

studied in focal models, and the experiments I will propose will be aimed precisely at clarifying 

mechanisms of TA after focal ischemia, with and without diabetes. 

A. Translation Initiation 

Kleihaus and Hossmann54 in 1971 showed in their seminal study that polysomes 

dissociated immediately with the onset of reperfusion and that protein synthesis was inhibited.  

Because it was known even then that polysome dissociation was a marker of inhibition of 

translation initiation, these authors inferred that translation initiation was inhibited in the 

reperfused neurons.  Much subsequent research investigated translation initiation following I/R 

so I will now explain translation initiation. 

Protein translation consists of three steps; initiation, elongation, and termination. More 

than a dozen globular protein initiation factors are involved in the initiation step, working in 
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concert to promote the binding of mRNA, the small 40S ribosomal subunit, the large 60S 

ribosomal subunit, and the methionine-conjugated initiator tRNA.  After the formation of the 

initiation complex, initiation factors dissociate and elongation factors are recruited to allow the 

ribosome to move on the mRNA in the 5’ → 3’ direction, by which the mRNA sequence is 

translated into a primary protein sequence.  A critical aspect of the elongation phase is the 

binding of chaperone proteins to the nascent peptide, which help it to fold into its mature three-

dimensional tertiary conformation.  The termination step takes place when a special tRNA binds 

to a stop codon on the mRNA, signaling elongation termination and dissociation of the nascent 

peptide. 

There are two rate-limiting steps in translation initiation that serve as almost universal 

regulatory targets, from bacteria, through yeast, to complex metazoans including humans.  These 

steps involve eIF2, which delivers the charged initiator tRNA and eIF4, which delivers the 

mRNA to the 40S subunit. eIF4F is a heterotetramer, consisting of eIF4E, eIF4A, eIF4B, and 

eIF4G subunits55.  eIF4E binds the 5’ m7-G cap of the mRNA.  eIF4A is a helicase that, in 

association with its cofactor eIF4B, unwinds the secondary structure of the mRNA, allowing the 

ribosome to scan the mRNA.  Finally, eIF4G is a scaffold protein, providing a surface on which 

many of these binding interactions occurs56.  eIF4 is controlled by several concurrent 

mechanisms55 and the main result of eIF4 regulation is to control which mRNAs get translated. 

eIF2 determines the global rate of protein synthesis and contributes to the initiation of 

protein translation by forming a ternary complex with GTP and Met-tRNA.  Binding of the 

ternary complex to the small 40S ribosomal subunit forms the 43S preinitiation complex.  

Addition of the mRNA-eIF4 complex forms the 48S preinitiation complex.  Once initiation is 

completed, the 60S large ribosomal subunit joins, and hydrolysis of eIF2-GTP to GDP occurs, 

followed by the dissociation of eIF2 from the completed ribosomal 80S complex.  The exchange 
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of GDP bound to eIF2 for GTP is mediated by eIF2B, a guanine nucleotide exchange factor, and 

is a crucial step for the recycling of eIF2.  This is important because eIF2-GDP cannot bind the 

methionyl charged initiator tRNA to form the ternary complex and prepare eIF2 for another 

round of initiation.  Thus, the quantity of available eIF2B is the rate-limiting factor for normal 

rates of translation initiation. 

Phosphorylation of the alpha subunit of eIF2 causes a decrease in total protein synthesis 

rate.  Mechanistically, when the alpha subunit of eIF2 is phosphorylated [eIF2(αP)], it binds 

eIF2B with a much higher affinity than dephosphorylated eIF2.57  The sequestration of eIF2B by 

eIF2(αP) effectively removes it from the reaction cycle.  This in turn results in an accumulation 

of eIF2-GDP that is not able to form the ternary complex and leads to the subsequent stalling of 

ribosomes during initiation, while awaiting delivery of the initiator methionine. 

There are two established mechanisms of eIF4F regulation: (1) by phosphorylation of 

eIF4E, which increases its affinity for eIF4G, thereby increasing the formation of the eIF4 

complex58 and (2) by 4E binding proteins (4EBPs), when dephosphorylated, compete with eIF4G 

for binding to eIF4E, preventing the formation of eIF456.  eIF4G regulation is not well 

understood, but what is known is that following infection with a picornavirus, eIF4G is 

degraded59.  The main effect of decreasing available eIF4 is a quantitative shift in which types of 

mRNA are translated and a net decrease in protein translation59. 

Fragmentation of eIF4G disables 5’-capped mRNAs to be delivered to the ribosome; 

however uncapped viral mRNAs contain special nucleotide sequences in their 5’ untranslated 

regions known as an internal ribosome entry site (IRES).  The IRES allows cap-independent 

translation of viral mRNAs60.  In addition, degradation of eIF4G via caspase-3 proteolysis occurs 

during apoptosis, where important apoptotic mRNAs such as the FAS receptor and DAP5 (an 

eIF4G homolog) contain IRES sequences61. 
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B. Changes in eIF2 and eIF4 during reperfusion 

Studies of translation initiation following brain ischemia and reperfusion have revealed 

that eIF2α is phosphorylated and eIF4G is degraded62,63,64,65,66.  In 2004, Garcia et al 

demonstrated that eIF2α phosphorylation occurred with or without ischemic preconditioning 

(IPC).  IPC is an exposure to a brief, nonlethal duration of ischemia followed by a lethal dose 

two days later.67  Cell death does not occur when IPC is performed68  and therefore, eIF2α(P) 

itself is not directly involved in DND since it occurs with or without IPC.  However, degradation 

of eIF4G occurred only with long ischemia durations, while eIF2α(P) occurred even with the 

shortest ischemia durations.  

Studies of eIF2α(P) showed that it is a transient and acute response.  While eIF2α(P) 

occurs rapidly, it also dephosphorylated rapidly.  Therefore, the consensus has emerged that 

eIF2α(P) cannot be responsible for the prolonged TA associated with DND2,69,75,86. 

 Studies of eIF4 following brain I/R showed that there was no change in eIF4E, but there 

was degradation of eIF4G, which was greatest in the CA1 region of the hippocampus64,70.  The 

main finding of studies of eIF4 subunits is the calpain-mediated degradation of eIF4G following 

brain I/R.  It is not known at present in which cell types changes in eIF4G occur or the 

significance of the changes in eIF4G.  As cell death can be induced in global models without 

degradation of eIF4G72,102, its degradation cannot be considered essential to DND in global 

models. 

C. Mechanisms of Prolonged Translation Arrest 

To try to discover the cause of the persistent TA, recent work has studied mechanisms of 

TA other than the regulation of translation initiation.   There are two main models and both share 

the common idea that translational machinery is sequestered into molecular complexes that 

cannot perform protein synthesis.  These models are called cotranslational aggregation and the 
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ribonomic dysfunction models. 

1. Cotranslational Aggregations 

The first model is called cotranslational aggregation proposed by Dr. Hu’s laboratory71-72.  

Extensive studies on neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s 

disease, and prion-like diseases demonstrated an increase in unfolded proteins in pathological 

neurons73.  An improperly folded protein, like amyloid-beta peptide precursor in Alzheimer’s 

disease, is ubiquinated and accumulated as protein aggregates throughout the cytoplasm73. 

Ubiquination of improperly folded and non-functional proteins is a signal for transport to the 

proteosome and subsequent degradation.  However, since the quantity of the unfolded proteins 

exceeds the rate at which they are degraded by the proteosomes, these abnormal proteins clump 

together irreversibly throughout the cytoplasm. 

The basis for Dr. Hu’s model of cotranslational aggregation is similar to changes seen in 

chronic neurodegenerative disorders.  Studies from the Hu lab showed that two types of 

ubiquinated particles accumulate in post-ischemic neurons74,71.  The first particle was termed 

“ubi particles” because it was cytoplasmic, relatively large (diameter ~ 1 micron) and contained 

ubiquitin.  Ubi-particles are visible under the light microscope, forming in all post-ischemic 

neurons immediately with reperfusion.  However, the ubi-particles disappear from resistant areas 

by 24 hr reperfusion, but persist in the ischemic vulnerable CA1 in an altered form.  The second 

particle, termed protein aggregates (PAs), is visible only under the electron microscope and was 

roughly 200 nm in diameter.  PAs persisted in the soma and dendrites of CA1 neurons after 24 hr 

reperfusion, but were absent in resistant neurons, such as the dentate gyrus.  Later studies from 

Dr. Hu’s lab investigated the composition of PAs75. Proteins that were shown to accumulate in 

the PAs were: (1) initiation factors, such as subunits of eIF2 and eIF4, (2) protein folding 

chaperones such as HSC70, and (3) proteins that make up the 40S ands 60S ribosomal subunits 
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such as ribosomal protein S6.  Therefore, the composition of the PAs suggested they were 

involved in prolonged TA by sequestering components needed for translation.  Further, that PAs 

occurred only in ischemic vulnerable neurons such as CA1 was an unambiguous correlation with 

the time course of persistent TA and DND, something that has not been demonstrated to this 

point when only changes in initiation factors have been studied.  

Based on this evidence, Dr. Hu has proposed the following model of cotranslational 

aggregation for prolonged TA in post-ischemic CA1 neurons.  He proposes that I/R cause 

misfolding of nascent peptides during the process of translation elongation.  These then: (1) 

become targets for ubiquination, and (2) clump together.  When the misfolded nascent peptides 

clump together, they also draw the ribosomes into the aggregates of misfolded proteins, thereby 

sequestering ribosomes.  This process is what is meant by the term “cotranslational aggregation”.  

Cotranslation aggregation provides an alternative pathway, other than eIF2α phosphorylation, 

that could potentially explain why there is irreversible prolonged TA in reperfused neurons 

destined to DND. 

Although there is good evidence to support this model, it has two main weaknesses.  The 

first is quantitative.  The total amount of translational components that get sequestered in the PAs 

is ~ 10-15% of ribosomal components, and ~ 35% of co-translational chaperones.  PAs have not 

been shown to quantitatively sequester any single translational component69.  A second weakness 

of this model is that it does not take into account the regulatory changes in initiation factors that 

were described above, namely the phosphorylation of eIF2α and the degradation of eIF4G.  We 

now develop our main ideas of an alternative model for prolonged TA. 

2. Ribonomics 

This model is the working model we use in our laboratory and is the outcome of work in 

Dr. DeGracia’s lab over the past ~7 years.  Unlike Dr. Hu’s model, the ribonomic dysfunction 
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model takes into account the changes in translation initiation that have been identified by Dr. 

DeGracia, Dr. Burda, Dr. Paschen and 

other investigators over the past 

years2,63,65,.  Before explaining the 

ribonomic dysfunction model, I will first 

define the term ribonomic. 

The term “ribonomic” is similar to 

the idea of genomic or proteomic, in that 

it refers to a total complement of mRNAs 

in the cell at any given instant.  There is 

more to this idea however.  The idea is 

meant to capture the fact that there are 

many layers of regulation of the cellular 

mRNAs that begin from the point of mRNA transcription and continue to the point an mRNA is 

ultimately degraded in the cytoplasm.  In between, an mRNA molecule undergoes complex 

patterns of localization and regulation via a large number of binding partners.  Therefore, the 

idea of ribonomic refers to the regulatory interactions of mRNA molecules with either proteins 

or microRNAs76. Figure 2 The ribonomic network. 

An important aspect of the cellular ribonome is that mRNAs undergo very specific 

subcellular localization via a number of structures that have been identified to be involved in 

mRNA function (Figure 2).  The known structures in the nucleus are the splicesome and the 

mRNA nuclear transport complex.  In the cytoplasm, the structures that localize mRNAs are 

stress granules (SGs), processing bodies, HuR granules, and polysomes.  Each of these structures 

plays a role in mRNA function.  Stress granules are like a train station and route mRNAs 

Figure 2. The ribonomic network. 
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amongst the other ribonomic structures77. Processing bodies are the particles that degrade 

mRNAs, and in this regard are similar to what the proteosome is to proteins78.  Polysomes are 

now viewed as one of these mRNA control particles69, and these are where the genetic 

information coded in an mRNA gets converted to protein.  HuR granules are structures that are 

thought to bring functionally related mRNAs together to carry out complex genetic 

programs79,80.  Dr. Jack Keene, one of the leaders in studying HuR granules, invented the idea of 

“mRNA operons”81. Similar to bacterial operons, in which several genes with a coordinated 

function are translated at the same time, the mRNA operon is the HuR granule that brings 

together functionally related mRNAs so that they may be acted upon at the same time in 

eukaryotic cells.  This action may involve coordinated translation, coordinated silencing (e.g. the 

mRNAs are present but not translated), or coordinated degradation (by routing the groups of 

mRNAs to processing bodies for degradation). 

VII. The Ribonomic Model and Brain I/R 

The ideas surrounding the concept of ribonomic regulation of mRNA offers new insights 

into possible mechanisms of persistent TA following brain I/R.  Since the seminal work of 

Kleihaus and Hossmann54 the field has been focused on changes in ribosomes as the cause of 

TA.  However, mRNA is just as important to protein synthesis as ribosomes are, and there has 

been a relative neglect in the field at understanding changes in mRNA and its regulation, and its 

possible role in TA. 

There are many, many studies in the field looking at the changes in specific mRNAs 

following I/R, either by in situ hybridization or PCR.  But there are only two papers that looked 

at global changes in mRNAs following I/R.  Maruno & Yanagihara82  showed a decrease in total 

mRNA in reperfused CA1 compared to other brain regions.  A decrease in mRNA would 

contribute to TA.  Matsumoto et al83, showed, using gradient centrifugation, that there was a 
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change in the subcellular fractionation of mRNAs in vulnerable neurons following ischemia83.  

The interesting point here is that, if there are indeed major changes in mRNA following brain 

I/R, such as could be envisioned looking at the ribonomic network, then this brings into question 

the interpretations of all of the many studies that have evaluated individual mRNAs.  To date, 

there has only four studies that looked at the ribonomic network, and these have all been carried 

out in Dr. DeGracia’s lab101-102.  I will now review these studies. 

A. SGs in Reperfused Neurons 

In 2005, Kayali et al. evaluated SGs in rat hippocampal formation using the cardiac arrest 

and resuscitation model of global brain ischemia101.  SGs are known to form following 

phosphorylation of eIF2α when cells undergo stress77.  SGs have been shown to function to 

move mRNAs around the cell into other ribonomic structures where the most focus to date has 

been the movement of mRNAs from polysomes to processing bodies84.  Since eIF2α 

phosphorylation was a well established change in reperfused neurons65, Kayali et al 

hypothesized that there might be a difference in SGs between resistant (e.g. CA3) and vulnerable 

(CA1) post-ischemic neurons.  This hypothesis linked to what was already a well-established fact 

of reperfused neurons, unlike Dr. Hu’s model of cotranslational aggregation. 

A 10-minute global brain ischemia was induced by cardiac arrest followed by reperfusion 

durations of 10 min, 90 min, or 4 hours.  Double-labeling immunofluorescence (IF) for two SG 

components, S6 and TIA-1, was used for evaluation.  SGs in resistant regions, such as CA3, 

hilus, and dentate gyrus (DG) increased at 10 min reperfusion and returned to control levels by 4 

hr reperfusion (4hR), however, this was not the case in vulnerable CA1.  At 4hR, S6 was solely 

localized within SGs only in CA1 pyramidal neurons.  This study led to the conclusion that 

prolonged TA in reperfused CA1 pyramidal neurons was due to loss of the 40S ribosomal 

subunits and the complete sequestration of the remaining 40S ribosomal subunits in SGs at a 
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time when eIF2(P) has dephosphorylated  substantially85.  This conclusion related SGs and the 

persistent TA in CA1 to the acute phase of TA mediated by eIF2α phosphorylation86. It also 

provided a mechanism of the continued inhibition of protein synthesis in reperfused CA1 

pyramidal neurons after eIF2α had been dephosphorylated.   

B. Problems with the SG Mechanism  

The main limitation of the Kayali et al study was that it looked only to 4 hr reperfusion, 

which is well before the time of DND at ~ 72 hr reperfusion101.  This was a technical limitation 

due to the difficulty of keeping rats alive for longer durations following cardiac arrest and 

resuscitation.  Following cardiac arrest, rats experience severe peripheral organ damage, which 

was studied by Dr. Montie87-88.  Because of these limitations the cardiac arrest model was 

unsuitable for studying longer reperfusion durations to assess the role of SGs in neuronal death. 

The experiment was repeated with a different model of global ischemia, the bilateral 

carotid artery occlusion plus hypovolemic hypotension model (2VO/HT) of Smith et al89.  This 

model does not cause peripheral organ damage, so animals can be reperfused for any duration.  

When 10 min of ischemia was applied with the 2VO/HT model, although CA1 death occurred at 

72 hr reperfusion, there was no loss of S6 or sequestration of S6 in SGs at 4 hr reperfusion69.  

That S6 sequestration in SGs did not occur at 4 hr following 2VO/HT indicated that the SG 

mechanism of prolonged TA was not general.  In the 2VO/HT model, the number of SGs 

increases similarly in both CA1 and CA3: there was a transient increase at 10 min reperfusion 

which returned to control levels for the remainder of reperfusion69. 

In the 2VO/HT model, DeGracia et al90 showed that SGs eventually fuse with protein 

aggregates, showing that Dr. Hu’s model and Dr. DeGracia’s model were not only compatible, 

but that the mechanisms converged.  However, even in this case, there was not a wholesale 

sequestration of any tested ribosome component in the SG/PA hybrid particles. 
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Dr. Hu performed a study of protein aggregates following stroke75, and in this study 

stained brain slices for ribosomal protein S6.  He showed a loss of S6 staining similar to that 

observed in the cardiac arrest model in the Kayali et al study101.  However, SGs were not 

evaluated in this study.  It is of interest to note the loss of S6 staining in the Liu et al study 

because below, in our results with Long Evans rats, we show that of the 14 antigens stained for 

following focal ischemia, all 14 showed loss of staining in the core region. 

C. mRNA Granules 

In a second ribonomic-oriented study using the cardiac arrest model, DeGracia et al 91, 

immuno-mapped eIF4G following global brain I/R.  Here it was observed that in the cytoplasm 

of reperfused neurons, the eIF4G staining took the form of granular “clumps”.  This paper 

suggested that the eIF4G “clumps” might represent degradation products of eIF4G, or possibly 

that eIF4G had been sequestered in the form of the ubi-protein complexes identified by Dr. Hu’s 

laboratory. 

In recent work from our lab, in which I participated, we used fluorescent in situ 

hybridization (FISH) to visualize poly-adenylated mRNAs (pA) in reperfused neurons using a 

poly(T) probe102.  We also performed colocalization studies of pA with a number of antigens by 

double staining with pA FISH and immunofluorescent histochemistry (IF).   

 
Figure 3Figure 3shows the main result of this study.  We observed the pA staining in 

non-ischemic controls (NIC) as diffuse in the cytoplasm.  However, with reperfusion, the pA 

also took the form of granular “clumps” in the cytoplasm, very similar to what was observed 

with eIF4G in the DeGracia et al (2006)91 study.  The granulated form of mRNA in the cell 

cytoplasm we termed “mRNA granules”.   
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Figure 3 : Detection of mRNA 
granules by pA FISH and co-IF 
for 40S, 60S and PABP.   
Left, non-ischemic controls (NIC) 
where the pA and proteins had a 
“smooth” and relatively 
homogeneous staining pattern in 
the cell cytoplasm. Right: 
following 10 min global brain 
ischemia and 1 hr reperfusion, the 
pA staining patterned formed 
granular structures, the mRNA 
granules. The mRNA granules did 
not colocalize with markers of the 
40S and 60S ribosomal subunits, 
but did colocalize with pA-
binding protein (PABP). Images 
adapted from 102. 

 

 

 

 
In the Jamison et al (2008)102 study, the mRNA granules colocalized with eIF4G 

indicating that the eIF4G granulation reported in the DeGracia et al., (2006)91 study were not 

degradation products, but were eIF4G localized in the mRNA granules.  The mRNA granules did 

not colocalize with TIA-1, proving they were not SGs.  They did not colocalize with TTP, a 

marker of processing bodies92, proving they were not processing bodies. The mRNA granules 

did colocalize with HuR, and we therefore believe that the mRNA granules are the HuR granules 

discussed above, which have been described and studied by the Keene Laboratory.  

Most significantly, as shown in Figure 3, when double labeling for pA and S6, a marker 

of the 40S ribosomal subunit, or pA and ribosome P antigen, a marker of the 60S subunit93, was 

performed, the mRNA granules did not colocalize with either antigen.  That is, the mRNA 
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granules did not colocalize with either the 40S or 60S ribosomal subunits. On the other hand, as 

shown in Figure 3, in non-ischemic controls, pA/S6 and pA/RPA strongly colocalized in the 

form of a diffuse cytoplasmic staining.  The Jamison et al102 study also evaluated in vivo 

translation after administration of radioactive amino acids.  The result was obtained that every 

reperfusion time point in which neurons showed the presence of the mRNA granules also 

showed inhibition of in vivo protein synthesis.  Therefore, we now believe that the mRNA 

granules sequester mRNAs away from ribosomes, and that this provides a second mechanism, in 

addition to the cotranslational aggregation model of Dr. Hu, of prolonged TA in reperfused CA1 

neurons.  

In fact, on the basis of the pA staining patterns presented in the Jamison et al study, it 

appears that the pA signal is quantitatively present in the mRNA granules.  This then is the first 

observation of any change in a translational component that: (1) correlates precisely with the full 

time course of TA, and (2) represents a quantitative transformation that would mechanistically 

explain the prolonged TA during reperfusion. 

VIII. Summary and Hypothesis 

To summarize the main points of the background, above it was discussed how a 

prolonged TA correlates exactly with the DND of neurons following both focal and global brain 

ischemia.  Many different mechanisms of prolonged TA have been tested.  Changes in ribosome 

regulation occur mostly at the early reperfusion time points and do not explain the prolongation 

of TA.  Some percent of ribosome components get sequestered in PAs, which can contribute to 

prolonged TA, but cannot fully explain it. To date, the only observation of changes in the 

translational system that is both apparently quantitative and correlates precisely with the time 

course of TA is the observation of mRNA granules following global brain I/R.  It is currently 

unknown if a similar sequestration of mRNA away from ribosomes occurs following focal brain 
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I/R, leading therefore to the main hypothesis of my Dissertation: 

Hypothesis 1 : Focal brain ischemia causes sequestration of mRNA away from 

ribosomal subunits.  

Above it was also discussed how diabetes worsens outcome following brain I/R.  To the 

best of my knowledge, and after a thorough literature review, the translation system in the 

reperfused brain of diabetics has not been studied.  Since TA correlates precisely with cell death, 

and cell death is increased in diabetics, I therefore offer the second main hypothesis of my 

dissertation: 

Hypothesis 2 : Diabetes worsens the TA associated with focal ischemia to increase 

the amount of cell death. 

IX. Factors Affecting Experimental Designs 

The above hypotheses will be tested by the following experimental strategies.  

1) Determine the formation of mRNA granules in the focal ischemic brain, with and 

without diabetes. 

2) Correlate the extent of mRNA granule formation with the extent of brain cell death in 

the focal ischemic brain. 

The methods utilized to carry out these experimental strategies included (1) an animal 

model of focal brain ischemia based on MCAO, (2) an animal model of diabetes using 

streptozocin (STZ)-induced destruction of pancreatic beta cells, (3) the use of standard staining 

methods to determine the extent of necrotic infarcts by the lack of brain slice staining with the 

compound 2,3,5 triphenyltetrazolium chloride (TTC), and (4) detection of pA mRNAs via 

fluorescent in situ hybridization, and a determination of their colocalization with a variety of 

protein antigens via immunofluorescent histochemistry.   Before proceeding to Methods and 

Results, some further rationalization of the Experimental Designs is in order. 
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A. Transient or Permanent Focal Brain Ischemia. 

Below we describe the use of the MCAO model of focal brain ischemia.  Unlike the 

global ischemia models used routinely in the lab, MCAO results in an incomplete ischemia, 

meaning that cerebral blood flow is never reduced to zero.  Even during the ischemic period in 

which the filament blocks the MCA, the remainder of the brain blood flow is normal and 

intrinsic brain and vascular reflexes are activated to enhance blood flow to the MCA territory via 

collateral anastomoses, creating a complex and only partially understood blood flow gradient124.   

Thus, blood flow in the occluded territory during the ischemic period of MCAO can range from 

between 20-50% normal117, which itself is animal strain dependent (see below). 

In contrast, with models of global brain ischemia, there is a discreet and well-defined 

period of zero blood flow (the ischemic period) followed by discreet periods of reperfusion.  

Also, the onset of ischemia and subsequent onset of reperfusion are often rapid.  Thus, the 

ischemic insult with global models can be thought of as a square wave.  But a similar logic does 

not hold for the MCAO focal model. 

These considerations are important with respect to the translational system as follows.  In 

global models, where blood flow is zero during ischemia, intracerebral ATP levels also go to 

zero, and ATP dependent processes come to a halt.  The phosphorylation of the alpha subunit of 

eIF2 requires ATP as a substrate.  Thus, in global models of brain ischemia there is no 

phosphorylation of eIF2 during the ischemia period64; this phosphorylation event occurs within 

the first minutes of reperfusion after ATP levels have increased enough to allow it to proceed.  

On the other hand, in a study by Wulf Paschen’s lab, the levels of eIF2(P) were observed to be 

at their maximum at the end of a 2 hr period of MCAO2.  During the subsequent reperfusion 

period the levels of eIF2(P) decreased from this maximum and returned to pre-ischemic 
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(control) levels by 6 hr reperfusion.  Thus, the focal case is much different from the global case 

with respect to the phosphorylation of eIF2, which is a key event in the regulation of translation 

in neurons following I/R. 

Therefore, the logic of our study design is different from a typical study using a global 

ischemia model that would use a fixed time of ischemia (usually 10 min) followed by a time 

course of reperfusion.  Because the “ischemic” period in an MCAO model is actually a complex 

mix of ischemia and reperfusion occurring in the same brain, the main focus of the studies we 

shall describe involve what is (perhaps not so accurately) called “permanent” focal ischemia, in 

which we will evaluate increasing durations of MCAO.  We feel this is a necessary set of studies 

to perform before any attempt to perform a fixed value of ischemia followed by increasing 

durations of reperfusion, or what is commonly referred to as “transient” MCAO.  The use of 

transient MCAO for the major studies reported here (e.g. those involving the Long Evans rat 

strain described in Chapter 3) was used primarily to validate the model by demonstrating 

production of a necrotic infarct. 

B. Rat Strain Effects following MCAO 

There is a substantial literature showing differences in outcome amongst different strains 

of rodents, specifically with the MCAO model94.  For example, a study by Prieto et al (2005)117 

showed statistically significant differences in cerebral blood flow during the MCA occlusion 

period in different rat strains.  In this study, Wistar showed the highest blood flows (average ~ 

50%), Sprague Dawley was intermediate (average ~ 38%), and Long Evans showed the lowest 

blood flows (average ~ 28%).   Why different strains demonstrate different blood flows is not a 

topic we study here.  But it is a factor we attempt to account for by performing our studies on 

two different rat strains:  Wistar and Long Evans.  By using the Wistar strain, we can compare 

our results to previous studies of the effect of diabetes after MCAO95,96,104.  By using the Long 
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Evans strain, we can compare our results to the reported studies of the translation system and the 

mRNA granulation process in post-ischemic brain64-65,90,101-102. 

C. Effect of Anesthetic on Outcome from MCAO 

The effect of anesthetic on outcome following brain I/R is a highly researched area.  

Hundreds of published studies have reported that anesthetics can affect outcome either to the 

positive or negative.  It is interesting to note, however, that, as with every other agent that has 

shown laboratory neuroprotection, the ostensible neuroprotective properties of anesthetics has no 

bearing at all on clinical anesthesia in a practical clinical setting97.  The common inhalation 

anesthetic halothane was used for the majority of studies reported here.  However, in my initial 

work with the Wistar strain, some experimental groups were performed using the also common 

combination of the dissociative anesthetic ketamine and the muscular relaxant xylazine.  I report 

these results below even though no significant differences were observed. 

X. Overview of Experimental Plan 

Given the above considerations, the overall experimental plan is illustrated in Figure 4. 

The general plan was that experimental groups were performed, from which tissue slices were 

made and then stained to detect either the infarct (TTC) or molecular markers.  Specific designs 

and analytic methods are reported in subsequent chapters.  The different experimental groups are 

illustrated schematically in Figure 4 and broken out into three categories: (1) animals strain 

(Wistar vs. Long Evans), (2) type of focal ischemia (transient vs. permanent), and anesthetic 

used (ketamine/xylazine (K/X) vs. halothane).  The main experimental groups, all of which used 

halothane anesthetic are listed in Table 1.  The following chapters describe the Methods and 

Results as follows: Chapter 2 describes the Wistar strain studies; Chapter 3 describes studies 

with untreated Long Evans rats, and Chapter 4 describes the studies with diabetic Long Evans 

rats.  Chapter 5 will then discuss the integrated results. 



www.manaraa.com

32 

 

Focal brain ischemia

Perfusion fix/tissue slices

Stain tissue

Analyze results

Focal brain ischemia

Perfusion fix/tissue slices

Stain tissue

Analyze results

• Wistar vs. Long Evans
• Permanent vs. transient MCAO
• ketamine/xylazine vs. halothane

• TTC
• pA FISH – mRNA granules

– map 3D distribution
– co-stain with 14 protein antigens

 

 
Figure 4: Overview of Experimental Designs 

 
Table 1: Experimental Groups Overview, including number of animals per group (n). 
Strain Ischemia Reperfusion Group name 
Wistar 2 hr - 2I 
(n = 3/grp) 2 hr 4 hr 2I/4R 
 2 hr 24 hr 2I/24R 
 2 hr 7 days 2I/7dR 
    
Long Evans 2hr - 2I 
(n = 5/grp) 2hr 24 hr 2I/24R 
 4 hr - 4I 
 6hr - 6I 
 8hr - 8I 
    
Long Evans 0.5 hr - 0.5I 
Diabetic 1hr - 1I 
(n = 4/grp) 4 hr - 4I 
 6hr - 6I 
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CHAPTER TWO: Studies on Wistar Strain - Methods and Results 

I. Rationale 

Since my 2nd major hypothesis sought to evaluate the effect of diabetes on the translation 

components, I began my work by evaluating the Wistar rat strain so I could compare to previous 

studies of diabetes and focal brain ischemia95,96,104.  Specifically, the 2005 study of Rizk, Rafols 

and Dunbar104 provided the starting point for my investigations.  This study showed that 2 hr 

transient MCAO plus 24 hr reperfusion did not generate an infarct in non-diabetics but that 

diabetic animals showed a large infarct at this same end point, and that neurons of the diabetic 

brains showed substantial activation of apoptotic pathways before the application of MCAO.  I 

therefore sought to evaluate the same time course of MCAO with and without diabetes.  The 

intent of the studies described in this Chapter was to first establish a baseline of mRNA granule 

formation along a time course of transient MCAO in non-diabetic Wistar rats, and then repeat the 

studies using diabetic animals. 

To briefly summarize the results of the studies in Wistar rats, I was unable to detect 

mRNA granules at any time point of reperfusion, out to 7 days.  Instead, I observed only a very 

minor formation of mRNA granules at the 2 hr ischemia-only time point.  We considered that the 

negative result may have been due to two factors.  First, it may be been an anesthetic effect. 

Second, we considered that at 2 hr MCAO, the small number of mRNA granules detected 

reflected either the beginning or end of a time course, and that more mRNA granules might be 

identifiable at either earlier or later ischemia durations.  I therefore conducted a series of studies, 

shifting from halothane to K/X, and also evaluating various durations of ischemia.  The results of 

these studies were also essentially negative.  Although mRNA granules were sporadically 

detected in the 2 hr MCAO + K/X group, their frequency was not apparently different from the 

halothane group.  In general, the frequency of mRNA granules was much lower than would have 
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been expected from our experience with the global brain ischemia model102. 

Being unable to establish a baseline of mRNA granule formation, studies of diabetes in 

the Wistar strain were not conducted.  It is for these reasons I turned to the Long Evans strain 

and those studies are described in Chapters 3 and 4.  Here I report my observations of low 

frequency mRNA granule formation in the Wistar strain neurons.  Because the frequency of 

mRNA granule formation was so low in the Wistar strain, there is not a comprehensive analysis 

such as described for the Long Evans strain in Chapter 3.  Additionally, because of the link 

between TA and stress responses, I stained to determine if the Wistar rats translated HSP70 

protein during the reperfusion time course. 

II. Materials 

HuR primary antiserum was purchased from Santa Cruz Biotechnology, Inc (Santa Cruz, 

CA).  Rabbit polyclonal anti-PABP was purchased from Abcam (Cambridge, MA).  Mouse 

monoclonal ribosomal protein S6 was purchased from Cell Signaling (Danvers, MA).  HSP70 

antiserum was from Stressgen (Ann Arbor, MI).  Alexa FluorR 488 donkey anti-goat IgG, Alexa 

FluorR 555 donkey anti-rabit IgG and Alexa FluorR 555 anti-mouse IgG, used for IF 

histochemistry were purchased from Molecular Probes (Eugen, OR).  A 5’ biotinylated 50-mer 

oligo-dT probe used for FISH was made by Integrated DNA Technologies, Inc. (Coralville, IA).  

Prehybridization and hybridization buffers were obtained from the mRNA locator In Situ 

Hybridization Kit (Ambion, Austin, TX).  TTC was purchased from Sigma-Aldrich (St. Louis, 

MO). 

III. Methods 

A. Animal Model 

All animal experiments were approved by the Wayne State University Animal 

Investigation Committee and were conducted following the Guide for the Care and Use of 
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Laboratory Animals (National Research Council, revised 1996).  Every effort was made to 

minimize animal suffering and the total number of animals used.  Unilateral focal brain ischemia 

was induced in male Wistar rats (weight 275-300g; Harlan, Indianapolis, IN) using the MCAO 

intraluminal suture model of Hatashita et al98. The experimental groups, anesthetic, and number 

of animals per group is shown in Table 2: 

Table 2: Experimental groups and anesthetic for studies of Wistar rat strain. 
Experimental group anesthetic n Ischemia duration Reperfusion duration 

2I halothane 3 2 hr 0 
2I/4R halothane 3 2 hr 4 hr 

2I/24R halothane 3 2 hr 24 hr 
2I/7dR halothane 3 2 hr 7 days 

0.5I K/X 3 ½  hr 0 
1I K/X 3 1 hr 0 

1.5I K/X 3 1 ½  hr 0 
2I K/X 3 2 hr 0 
4I K/X 3 4 hr 0 

Anesthesia was initiated with either a single intraperitoneal (IP) injection of 0.25 ml/kg 

and 0.8 ml/kg K/X or 5 % halothane and maintained with 1.5 % halothane via facemask for the 

duration of the surgery.  Animals were supine and core body temperature was maintained at 37 ± 

0.5˚ C by a homeostatic blanket system (Harvard Apparatus) using a rectal thermometer.  Rats 

were maintained normothermic during the entire surgery period.  After shaving the cervical 

region and cleansing the area with betadine, a midline cervical incision was made in order to 

expose the omohyoid and sternomastoid muscles, which were separated using a retractor to 

expose the right common (CCA) and its bifurcation.  The right CCA was dissected free of 

surrounding tissue and nerves.  All branches of the external carotid artery (ECA) were isolated 

and coagulated.  The CCA was clamped using a vascular clip and the internal carotid artery 

(ICA) was isolated and also clamped.  Under an operating scope, a small cut was made in the 

ECA and a nylon filament ~ 18.5 mm in length was inserted into the CCA and secured.  The 
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vascular clip was then removed from the ICA and the stump of the ECA was transected in order 

to facilitate maneuvering of the nylon filament into the ICA.  The filament was carefully passed 

up into the lumen of the ICA, blocking the MCA at its origin.  Laser Doppler flowmetry (LDF) 

from the ipsilateral cortex, at a coronal level approximately 1 mm anterior to Bregma was used 

to confirm a reduction in blood flow.  Once the LDF readings stabilized, the vascular clip was 

removed from the CCA and all incisions were closed.  Rats were then returned to their cages and 

allowed to recover.  Upon regaining consciousness, rats displayed paresis of the left forelimb and 

unilateral circling.   

B. 2,3,5 Triphenyltetrazolium Chloride Staining  

Immersion staining of TTC was used to measure tissue viability and evaluate infarct size.  

The principle of TTC staining relies on the oxidation of the tetrazolium salt by intact 

mitochondrial dehydrogenase into a red, lipid-soluble formazan, which yields the carmin red 

product, formazan99.  Viable tissue therefore stains deep red, whereas infarcted (necrotic) tissues 

lack dehydrogenase activity and therefore do not stain. Thus, the infarcted area (white) can be 

easily distinguished from the surrounding intact tissues99-100.  At the appropriate times, the rats 

were decapitated, the brains rapidly removed, and placed in ice cold 0.9% NaCl for 5 minutes.  

The brains were then sectioned into 2 mm thick coronal sections using a brain matrix and then 

placed in a 2% solution of TTC in 0.9% NaCl, covered and allowed to incubate for 30 minutes at 

37 ˚C on a shaker.  At the end of the incubation period, the sections were removed and placed in 

4% paraformaldehyde (PFA) at 4˚C for post-fixing.  Digital images of the brain sections were 

taken 48 hours later. 

C. Double-labeling Immunofluorescence and Fluorescent In Situ Hybridization 

At the end of the permanent ischemia or reperfusion periods, the animals were re-

anesthetized and transcardially perfused with 50 ml of 0.9% sodium chloride followed by 250 ml 
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of 4% PFA in 0.1M PBS at a flow rate of 20 ml/min.  The brains were removed and post-fixed 

overnight in the PFA solution at 4˚C.  Using a vibratome, 50 micron slices through the anterior 

forebrain were obtained and stored at -20˚C in cryostat solution until used.  

IF histochemistry for HSP70 was performed as follows.  Brain slices were washed in 

0.1M PBS for 10 minutes x4 then blocked in 10% normal donkey serum (NDS) in 0.1M PBS 

containing 0.3% Triton X-100 (PBS-TX) solution for 25 minutes, following by washing x3 for 

10 min in 0.1M PBS.  Slices were then immersed in primary antibodies in 1% NDS in PBS-TX 

at room temperature on a shaker overnight.  The following day, slices were washed x3 for 10 

min in 0.1M PBS and then incubated in secondary antibody solution, in the dark, for 2 hours and 

washed again x3 for 10 min in 0.1M PBS.101  HSP70 antiserum was used at a 1:200 dilution. 

Double IF/FISH was performed exactly as described previously102 with poly-T probe at 

50 ng/ml and the following primary antisera dilutions:  1:25, anti-HuR; 1:250, anti-PABP; 1:25, 

anti-S6. Secondary antisera dilutions in 1% NDS in PBS-TX were:  1:300, Alexa 488; 1:300, 

Alexa 555. 

Briefly, Double IF/FISH was performed in a two stage procedure in which the FISH 

procedure was a modification of that described in Bessert and Skoff (1999)103.  The first stage IF 

procedure was as described above.  The second FISH stage was performed under low light 

illumination or in the dark.   At the end of the IF procedure slices were mounted on lysine-coated 

slides.  IF-stained sections were fixed in 3.6 % formaldehyde in PBS for 10 min at room 

temperature and then drained and blotted.  Prehybridization was carried out in a box humidified 

with 50% formamide/4X SSC inside an incubator at 32oC for 3 hr in prehybridization buffer 

(mRNAlocator In Situ Hybridization Kit, Ambion, Austin, TX).   Slides were then incubated 

overnight in the same apparatus in a solution of 50 ng/ml of a 5’-biotinylated 50-mer oligo-dT 

probe (Integrated DNA Technologies, Inc., Coralville, IA), dissolved in hybridization buffer 
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(mRNA Locator In Situ Hybridization Kit).  The next day, all subsequent processing was 

performed at room temperature.  Slides were washed x2 in 2X SSC for 10 min and then 

incubated in 1:500 Alexa 488-labeled streptavidin (S32354, Invitrogen, Carlsbad, California) in 

4X SSC/0.1% Triton X-100 for 60 min.  Slides were then washed once in 4X SSC for 10 min 

followed by incubation in 2X SSC/0.1% Triton X-100 containing 1: 667 of biotinylated goat 

anti- streptavidin (BA-0500, Vector Laboratories, Burlingame, CA) for 60 min.  Slides were 

again washed once in 4X SSC for 10 min and then incubated in 1:667 Alexa 488-labeled 

streptavidin in 2X SSC/0.1% Triton X-100 for 60 min.  Slides were then washed sequentially in 

4X SSC for 10 min and 2X SSC for 10 min, and then coverslipped for viewing.   

Slides were examined on an Axioplan 2 Imaging System (Carl Zeiss, Oberkochen, 

Germany) equipped with an ApoTome.  Excitation at 488 nm and 568 nm, and emission at 518 

nm and 600 nm were used for Alexa 488 (green) and Alexa 555 (red), respectively.  Optical 

sectioning was performed using the X63 oil immersion objective to generate z-stacks as 

previously described101.  Fluorescent micrographs shown in the figures are orthographic 

projections of 2.45 micron z-stacks (7 x 0.35 micron optical sections), unless otherwise stated.  

Validation of antisera staining was previously described101-102. 

IV Results 

A. TTC staining 

As a means to validate the MCAO model and evaluate infarct volume, TTC staining was 

performed on male Wistar rats that underwent 2 hours of MCAO followed by 4 hours, 24 hours 

and 7 days of reperfusion.  2 hours of MCAO did not lead to an appreciable necrotic core, at any 

reperfusion duration, even to 7 days reperfusion (Figure 5).  This finding was consistent with 

previous studies conducted in this strain where no visible infarct was seen with TTC staining, 

following 2 hours of ischemia and 24 hours of reperfusion104. 
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Figure 5:  TTC staining of Wistar rat strain 
following transient focal ischemia. 
Male Wistar rats were subjected to 
normothermic, unilateral MCAO for 2 hours 
of ischemia only (2I), 2 hours of MCA 
ischemia plus: 4 hours of reperfusion (4hR), 
24 hours of reperfusion (24hR)  and 7 days 
of reperfusion (7dR).  Representative 2 mm 
slices arranged anterior (top) to posterior 
(bottom), encompassing the MCAO 
territory which includes the striatum.  

 

 

 

 

 
 

B. Frequency of mRNA granule formation 

Microscopic studies conducted to investigate whether or not mRNA granule formation 

took place following MCAO in the Wistar rat revealed that mRNA granules formed only at a low 

frequency.   Granulation of mRNA was detected in only 2 of the 15 animals tested with K/X and 

2 of the 12 animals tested using halothane (Table 3).  Significantly, for both anesthetics, the only 

experimental group showing mRNA granules was the 2 hr MCAO ischemia group. mRNA 

granules were not detected in any reperfused samples.  The use of the injectable anesthetics 

ketamine and xylazine or the inhalational anesthetic halothane had no effect the outcome 

remained the same.  With respect to the experimental groups, therefore, the frequency of mRNA 

granule formation was 67% for both the K/X and halothane 2 hr MCAO groups, and zero for all 

other groups.  Wistar rats, in general, have been shown to be more resistant to ischemic insults 
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when compared to other strains with comparable physical and physiologic parameters105,106.  The 

lack of mRNA granule formation in this instance, consistent with the TTC staining result, 

indicates the Wistar strain did not experience a severe enough ischemic insult to induce mRNA 

granulation. 

Table 3:  Frequency of mRNA granule formation in the Wistar rat following MCAO.   
Anesthetic total n n with mRNA granules 

K/X 15 2 (13.3 %) 
halothane 12 2 (16.7 %) 

Animals were tested using either ketamine/xylazine (K/X) or halothane anesthesia. 

Error! Not a valid bookmark self-reference. Figure 6: Distribution of mRNA granule containing neurons in Wistar rats at 2 hr MCAO. 

C. Histological assessment of mRNA granules in Wistar rats 

In spite of their low frequency of occurrence, I assessed the mRNA granules in the 2I 

Wistar rat group to determine if their colocalization 

properties were similar to that observed following global 

brain ischemia.  In the four samples displaying neurons 

containing mRNA granules, these neurons were sparsely 

scattered in clustered areas on the ipsilateral hemisphere as 

shown in Figure 6.  A crude estimate would put their area 

to be less than 5% of the total hemispheric area, and they 

tended to be more medially located in the ipsilateral 

hemisphere.   

Figure 7, panels A, B and C, show 

photomicrographs of mRNA-granule containing neurons 

co-stained with pA FISH and IF for S6, PABP and HuR, respectively.  For each co-staining pair, 

sham operated non-ischemic control (NIC) animals are shown along with the 2I samples.  The 

first column is the merged image, the second column the pA channel (green) and the third 

Figure 6 : A rough indication of the 
distribution of mRNA-granule 
containing neurons in Wistar rats at 
2hr MCAO. Green circles indicate 
scattered areas where the neurons 
showed mRNA granulation. The dark 
red area is where a necrotic core 
would be expected based on the MCA 
territory, and the surrounding light red 
area represents where penumbra is 
expected.
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column is the respective red channel for the protein antigen.   

Figure 7A shows pA/S6 staining in layer II cerebral cortical neurons. The NIC samples 

showed a smooth and homogeneous pattern of pA/S6 colocalization in the cell cytoplasm.  This 

colocalization likely represents normal mRNA-ribosomal association during the protein 

translational process.  Neurons in the ipsilateral region of the 2I sample formed mRNA granules 

that did not colocalize with S6, which is better visualized by observing the separate channels.  In 

the pA channel there is concentration of the pA signal that is not present in the S6 channel.  

Compared to the results of layer II cortical staining I will show in Chapter 3, the amount of 

mRNA granulation in Figure 7A can be considered only partial.   

A more obvious mRNA granulation was apparent in the layer V pyramidal neurons seen 

co-stained with PABP in Figure 7B and HuR in Figure 7C.    For pA/PABP, it is again seen how 

the NIC showed a diffuse cytoplasmic colocalization.  For the 2I sample, both the pA and PABP 

signal show granulation, which colocalize to form yellow mRNA granules in the merged image.  

For pA/HuR (Figure 7C), the mRNA granules were quite obvious compared to NIC samples.  

Although the merged image of pA/HuR does not produce yellow mRNA granules, it can be seen 

that HuR is indeed granulated in the HuR channel of the ischemic but not NIC sample. 

In the Jamison et al (2008) study of mRNA granules in global ischemia, identical patterns 

were seen in which S6 did not, but PABP and HuR did colocalize with the mRNA granules.  

Therefore, in spite of the relatively infrequent occurrence of mRNA granules in the Wistar rat 

strain following focal I/R, the mRNA granules are similar to those discovered following global 

ischemia with regard to colocalization with these three antigens. 
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Figure 7 : Colocalization studies of mRNA granules with S6, PABP & HuR in 2hr MCAO 
Wistar rats. 
(A) pA/S6 in layer II of cerebral cortex, (B) pA/PABP in layer V or cererbral cortex, (C) 
pA/HuR in layer V of cerebral cortex.  Merged images, pA green channel and protein antigen red 
channels as indicated.  Scale bars apply to each respective row. 
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D. “Intermediate” pA phenotypes of some layer V neurons 

As seen in Figure 7C, the layer V neurons showed distinctly identifiable mRNA granules 

in the 2I samples.  However we occasionally observed a phenotype that appeared “intermediate” 

between fully granulated mRNA as seen in Figure 7C and the relatively smoother pA signal in 

the cytoplasm of NICs.  The rarity of these “intermediate” neurons made systematic study of 

them implausible and I simply note and record their occurrence 

here.
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Figure 8 illustrates two of these layer V pyramidal neurons each of which displayed a 

prominent ridge-like pA staining pattern, which was not present in the S6 channel.  The “ridges” 

appeared as either perinuclear or as tracks that appeared to run along the plasma membrane and 

apical dendrite.  
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For the neuron in the first column of Figure 8, a “deep stack” of 37 optical sections with a 

z-depth of 13 microns was acquired.  This z-stack was volumetrically rendered using a method 

called linear weighted averaging (LWA) to better visualize the pA staining pattern of the cell.  

LWA is a non-transparent method of superimposing the optical sections that allows 3D 

structures such as the ridge-like structures along the nucleus (arrow labeled 1) and plasmalemma 

of the apical dendrite (arrows labeled 2) to be more readily seen.  Additionally, a reticulated 

structure (arrow labeled 3) was prominently visible; at this same location in the cell there was no 

staining at all for ribosomal protein S6 (arrow labeled 4).  Again, the relative rarity of these 

prevented any type of systematic study.  In Chapter 3, where systematic colocalization studies 

are performed with the mRNA granules, I found these did not colocalize with markers of the 

endoplasmic reticulum, Golgi apparatus, microtubules or intermediate filaments, and it is possible 

the ridge-like structures identified here would also not colocalize with these structures. 
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Figure 8:  Layer V neurons with an “intermediate” pA phenotype in Wistar rats.  
First and second columns show single layer V neurons containing “ridge-like” pA structures that 
are not present in the S6 channel.  Third column shows a 3D reconstruction of the neuron in the 
first column using linear weighted averaging volume rendering that enhanced the visibility of the 
pA structures. 

E. HSP70 immunostaining 

The heat shock response is a well-documented stress response that occurs in cells 

following perturbations in its environment.  HSP70 protein belongs to the family of heat shock 

proteins that are upregulated when a cell is stressed.  Previous studies have shown that hsp70 

mRNA and HSP70 protein are upregulated primarily in endothelial cells of large blood vessels 

following MCAO ischemia107 and that the upregulation of its translation correlates with the 
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colocalization of HuR with mRNA granules102. Additionally, translation of HSP70 has been 

shown to be a protective response following brain I/R108.  Given that Wistar rats did not form an 

infarct at any time point tested (Figure 5), I assessed the expression of HSP70 protein in order to 

see if there was a correlation with the TTC staining results.   

Following 2 hours of ischemia, HSP70 was expressed in different structures as a function 

of reperfusion duration (Figure 9).  At 4hR, only contractile cells wrapped around the surface of 

endothelial cells known as pericytes stained for HSP70 in the penumbral cortex and striatum.  

The morphology of the pericytes was visualized by 3D reconstruction of z-stacks of HSP70 

staining (Figure 9D).  At 24hR, striatal neurons prominently stained for HSP70.  At 7dR only 

endothelial cells of blood vessels throughout the ipsilateral hemisphere stained for HSP70.  

These results show that a complex pattern of HSP70 expression occurred in the brains of the 

Wistar rats following transient MCAO.  The successful translation of HSP70 protein is consistent 

with the lack of an infarct in the Wistar strain following MCAO. 

 
Figure 9 :  HSP70 protein 
expression in different cell 
types as a function of 
reperfusion duration.  
2 hours of MCAO ischemia 
followed by:  (A) 4 hours 
reperfusion (4hR) only 
showed HSP70 expression in 
pericytes. (B) High 
magnification, 3D 
reconstruction of HSP70 
reveals the characteristic 
morphology of pericytes.   
(C) At 24hR, penumbral 
neurons stained for HSP70 
and (D) at 7dR endothelial 
staining of HSP70 occurred in 
blood vessels. 
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CHAPTER THREE: Studies on Long Evans - Methods and Results 

I. Rationale 

Although the Wistar rat strain evidenced neurons containing mRNA granules following 2 

hr MCAO, and these had characteristics in common with those identified in neurons following 

global brain ischemia102, their frequency of occurrence in both the experimental groups and in 

terms of the area of brain tissue affected was far too small to use as a baseline for studies of the 

effect of diabetes on the translational system following focal brain ischemia.  Since mRNA 

granules had been initially discovered in the Long Evans rat strain102, I undertook MCAO studies 

in the Long Evans rat strain. 

This turned out to be a fortuitous decision because the Long Evans rat strain displayed 

abundant mRNA granulation of neurons in response to focal brain ischemia as I will describe in 

this chapter.  Because the Long Evans gave a positive result with respect to mRNA granule 

formation, I undertook a systematic analysis of their distribution along a time course of ischemia 

duration.  A reperfusion time course was not studied here because it was first necessary to study 

the degree to which mRNA granules formed at different durations of ischemia.  To characterize 

the mRNA granules along a time course of ischemia, three main types of analysis were 

performed: (1) a study of different histological regions in the MCAO brain, (2) a three 

dimensional (3D) study along the rostral-caudal extent of the brain, and (3) a comprehensive 

colocalization analysis of the mRNA granules with two categories of markers: (a) mRNA 

interacting proteins, and (b) markers of subcellular organelles. 

II. Materials 

Table 4 lists the antisera, what they are markers of, vendors and dilutions used in the 

present study. All other antibodies were purchased from companies previously described in 

Chapter 2.  I will briefly describe each marker in the Results section ahead. 
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Table 4: Antisera used for colocalization studies.   
Antisera Marker for Vendor Catalog # Dilution 

-tubulin  microtubules Sigma T6199 1:100 
APRIL HuR ligand Abcam ab4224 1:100 
COX IV mitochondria Abcam ab16056 1:50 
GM130 cis-Golgi apparatus BD Biosciences 610822 1:100 
HuR mRNA BP Santa Cruz sc-5261 1:25 
NeuN nucleus Millipore MAB377 1:500 
NF H/M intermediate 

filaments 
Sigma-Aldrich N2912 1:300 

PDI Endoplasmic 
reticulum 

Thermo Scientific MA3-019 1:200 

pp32 HuR ligand Enzo Life Sciences ADI-905-234-
100 

1:250 

RPA 60S subunit ImmunoVision HPO-0100 1:5000 
S6 40S subunit Cell Signaling 2317 1:25 
TGN38 trans-Golgi apparatus Thermo Scientific MA3-063 1:200 

Abbreviations and a brief description of the antigens is provided in the text. 

A. Animal Model 

Unilateral focal brain ischemia was induced in male Long Evans rats (weight 275-300g; 

Charles River Laboratories International, Inc., Wilmington, MA) using the same model of 

MCAO described in Chapter 2.   The experimental groups and number of animals used are listed 

in Table 5. 

Table 5: Experimental groups used in Long Evans studies. 
Experimental Group Ischemia Reperfusion n 

Sham controls - - 3 
2I 2hr - 5 

2I/24R 2hr 24 hr 5 
4I 4 hr - 5 
6I 6hr - 5 
8I 8hr - 5 

III. Methods 

A. TTC Staining 

TTC staining was performed as previously described in Chapter 2.  

B. Immunofluorescence and FISH 

Double IF/FISH was performed exactly as described in Chapter 2.  Primary antisera 
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dilutions are listed in Table 4.  Secondary antisera dilutions in 1% NDS in PBS-TX were the 

same as that previously described in Chapter 2. 

C. Systematic histological analysis of MCAO brain 

As described in Chapter 1, focal ischemia results in heterogeneous damage in the brain 

producing, at minimum, a core, penumbra, and the remaining nonischemic brain tissue.  

Therefore, for all samples, each of these regions was analyzed.  In addition, since the MCA feeds 

both the cerebral cortex and striatum, I evaluated both regions histologically.  The rat cerebral 

cortex, while functionally six layered, shows 3 anatomical demarcations at the coronal levels I 

investigated (around 1 mm anterior to Bregma).  Layers II and III form one large layer most 

proximal to the brain surface, under which are layers V and then VI.   Thus, I routinely analyzed 

4 histological regions: striatum, and layers II/III, V, and VI.  In total, to systematically study the 

brain after focal ischemia, for every experimental animal I routinely photographed from the 12 

different areas in a given coronal section.  The different MCAO-induced areas and histological 

regions are illustrated in Figure 10. 

 

Figure 10: Regions systematically analyzed in Long Evans MCAO brains.  
Histological regions are listed on the left of the coronal section, and MCAO-induced areas are 
displayed on the right hemisphere.  The coronal section used for analysis of histological regions 
was at approximately 1 mm anterior to Bregma. Purple area in sagittal inset shows the rostral-
caudal extent used for 3D reconstructions described in section IV.D below.  Images adapted and 
modified from109. 
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D. Volumetric reconstruction of pA staining 

For computer reconstructions of the 3D rostral to caudal spatial distribution of neurons 

containing mRNA granules, sixteen coronal slices, 100 microns apart, were evaluated between 

approximately 1.32 mm to – 0.60 mm anterior to Bregma, containing the MCA territory.   

Slices were stained by double labeling with pA FISH and PABP IF.  Areas with mRNA 

granules-containing neurons and areas with shrunken/distorted neurons (described in Results 

below) were determined for each slice under 20X magnification and marked on photocopies of 

corresponding coronal sections taken from the Paxinos and Watson Rat Brain Atlas109.  Since 

PABP strongly colocalizes with mRNA granules102, all mRNA granule-containing regions were 

confirmed by inspection under the 40X objective for both pA and PABP stains.  Determination 

of areas containing neurons with either mRNA granules or with shrunken/distorted neurons was 

conducted by two independent observers blinded to the identity of the experimental groups; the 

independent mappings generally agreed to > 90%. 

Hand-drawn images were then digitized as BMP files on a flat bed scanner and imported 

into Amira 5.2.0 (Visage Imaging, San Diego, CA, USA) to perform 3D reconstructions.  The 

mRNA granule-containing and shrunken/distorted neuron-containing areas were traced onto 

cross sections at approximately the same Bregma coordinates of the corresponding images of the 

digital rat brain dataset from the Laboratory of Neuro Imaging (LONI) from the University of 

California at Los Angeles110.  The LONI dataset used was the series of coronal images through 

the entire rat brain sampled at 30 micron intervals and digitized at 1024 x 1024 pixels, 8 bit 

resolution. (This data is available for download at: www.loni.ucla.edu/Atlases/Atlas_ 

Detail.jsp?atlas_id=1) 

For both illustration purposes and for quantitation (described below) the 3D reconstructed 

volumes were embedded within the LONI dataset.  The LONI dataset was masked to include 
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only the brain, and volumetrically rendered in Amira from slice (using the exact file names of the 

LONI dataset) cor_0979.gif (at Bregma -0.66 mm) through slice cor_1043.gif (at Bregma +1.34 

mm) using the Voltex method with ‘mip’ (mean intensity projection) and ‘color table’ options 

selected, and a constant color of RGB = (0.894, 0.894, 0.894). 

From the 16 sequential brain sections of FISH/IF staining, 3D volumes were generated in 

Amira 5.2.0 as per user manual instructions.  Two volumes were constructed per each 

experimental animal: the volume containing shrunken/distorted neurons (colored red in the 

figures and labeled “core”) and the volume of mRNA granule-containing neurons (colored green 

in the figures and labeled “granular”).  Magnitudes of each volume were taken as the number of 

voxels contained in each volume as calculated by built-in Amira routines.  The “total volume” 

was taken as the number of voxels in one hemisphere of the masked LONI dataset between 

coordinates +1.34 to -0.66 mm anterior to Bregma.  “Total affected volume” was the sum of the 

core and granular voxels in an animal.  Two different percents were calculated to express the 

volumetric data.  Relative percent volume calculated the relative proportions of the core and 

granular volumes occupying the total affected volume.  Absolute percent volume calculated the 

percent of the total LONI dataset volume occupied by the granular and/or core volumes.  

Calculated percents for experimental groups were compared using ANOVA, and Tukey post hoc 

where appropriate, with significance was set at p < 0.05.  Using the pre-core volume as an 

example, the percentage formulas were. 

100
# voxels pre- core

  
# voxels pre- core + # voxels granular

relative percent x  

100
# voxels pre- core

 
# voxels in LONI dataset between Bregma +1.34 mm to - 0.66 mm

absolute percent x  
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IV. Results 

A.  TTC staining 

When permanent MCAO (pMCAO) was evaluated out to 8 hr ischemia in the Long 

Evans rats, none of the pMCAO samples showed an infarct by TTC staining (Figure 11).  

However, TTC staining of Long Evans rats showed an infarct in the 2 hr ischemia plus 24 hr 

reperfusion group (Figure 11).  This result contrasts to the Wistar groups, where no infarct was 

seen as far out as 7 days of reperfusion (Figure 5). 

The 2I/24R TTC result provided a rough guide to our use of the terms “penumbra” and 

“core” in the 3D reconstructions described below.  In the pMCAO ischemia-only samples, 

neurons located in the areas devoid of TTC staining in the 2I/24R samples generally had a 

shrunken and distorted appearance, and often had weak staining for protein antigens.  Therefore, 

in spite of TTC staining the pMCAO brains from 2 to 8 hr ischemia-only, the neurons displayed 

characteristics that are not revealed by TTC, but can be detected by other stains111, and are 

indicators of damaged neurons that will eventually form the core of the infarct. 

 

 
 
 
 
Figure 11:  TTC staining in Long Evans rats subjected to 
MCAO ischemia.   
Representative 2mm thick brain slices are arranged 
anterior (top) to posterior (bottom) and encompass the 
MCAO territory, which includes the striatum. 

 

 

 

 

sham     4I        8I       2I/24R
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B. Frequency of mRNA granule formation 

The total number of experimental Long Evans rats showed a much higher frequency of 

mRNA granule formation (80%) (Table 6) than the total number of experimental Wistar animals 

(11%) (Table 3).  However, this is a misleading number because the experimental groups are not 

directly comparable in terms of the total number of rats. The Wistar set consisted mainly of 

transient MCAO, whereas the Long Evans set was mainly pMCAO.  When compared in terms of 

experimental groups, the Wistar and Long Evans had comparable frequencies: 67% of 2I Wistar 

rats and 100% of the pMCAO groups of Long Evans rats had mRNA granules in some neurons.   

We will see below, however, that the affected areas were much larger in the Long Evans strain. 

 
Table 6:  mRNA granule frequency in Long Evans rats. 

Experimental Group n tested n w mRNA granules Percent 
2I 5 5 100 % 

2I/24R 5 0 0% 
4I 5 5 100 % 
6I 5 5 100 % 
8I 5 5 100 % 

total 25 20 80% 

C. Systematic histology of mRNA granules in Long Evans MCAO 

Co-staining pairs of pA FISH with IF for S6, PABP and HuR were performed across the 

12 areas illustrated in Figure 10.  Three co-stains were performed per animal to compare to both 

the Wistar results that used these stains and to compare to the previous work on global ischemia 

in the Jamison et al. study102.  There were two main questions I wanted to ask with these studies: 

(1) Did mRNA granules form preferentially in any of the four histological regions: layer II/III, 

layer V, layer VI and striatum?  (2) Did mRNA granules form preferentially in any of the three 

major MCAO-inducing brain areas: core, penumbra and (non-ischemic) contralateral 

hemisphere?  Representative samples for layers II/III and V are shown in Figure 12, and for layer 
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VI and striatum in Figure 13. The samples shown are drawn mainly from the 2I and 4I groups. 

The results to emerge from these studies are: (1) neurons of all 4 histological regions, 

layers II/III, V, VI and striatum, formed mRNA granules, (2) the mRNA granule-containing 

neurons were found preferentially in penumbral areas at the watershed between the MCA and 

ACA, (3) their colocalization patterns with S6, PABP and HuR were similar to those seen in the 

Wistar studies described in Chapter 2 and to those seen following global brain ischemia102, and 

(4) shrunken/distorted neurons were present in the core areas fed directly by the MCA. 
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Figure 12: Layers II/III and V: sham, contralateral, penumbral and core pA & S6, PABP or HuR 
merged images.  Scale bars in lower right panel apply to all panels for a given histological 
region. 



www.manaraa.com

56 

 

sham            contralateral        penumbra              core

sham            contralateral        penumbra              core

H
uR

/p
A

P
A

B
P

/p
A

S
6/

pA
H

uR
/p

A
P

A
B

P
/p

A
S

6/
pA

H
uR

/p
A

P
A

B
P

/p
A

S
6/

pA
H

uR
/p

A
P

A
B

P
/p

A
S

6/
pA

L6

Striatum

10 m

10 m

 
Figure 13: Layer VI and striatum: sham, contralateral, penumbral and core pA & S6, PABP or 
HuR merged images. Scale bars in lower right panel apply to all panels for a given histological 
region. 
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In addition, the core neurons generally had a weaker staining for the protein antigen, but 

the pA staining was good enough to discern the shape of the shrunken and/or distorted neurons.  

Finally, in general, the neurons of the four histological regions on the contralateral side 

resembled sham operated controls. 

With regard to the colocalization patterns, in sham and contralateral neurons, S6 and 

PABP formed diffuse colocalization.  When neurons showed mRNA granules, S6 did not, but 

PABP and HuR did colocalize with the mRNA granules.  The colocalization with HuR was 

strong enough to form distinctly yellow mRNA granules, unlike the Wistar strain, but similar to 

CA3 following global brain ischemia102. 

D. 3D Volumetric analysis 

The above colocalization studies showed that neurons in all cortical layers and the 

striatum could form mRNA granules, but there was quite a bit of variance in the distribution of 

the granules amongst these regions.  3D volumetric reconstructions were generated as a means to 

determine the relative distributions of neurons containing mRNA granules in the various regions.  

The reconstructions also served to assess the extent of the ischemic insult through a rostral to 

caudal extent in the brain. 

A representative series of cross sections used to generate the 3D reconstruction of a 4I 

sample is shown in Figure 14.  The top panels illustrate the appearances of areas assigned as 

either granular penumbra or shrunken/distorted core verses normal appearing, using the pA 

FISH/PABP IF co-staining of layer II cortical neurons.  The bottom panel of Figure 14 shows an 

example of a 4I animal where mRNA-granule containing (green areas) and shrunken and 

distorted neurons (red areas) appeared in rostral-caudal cross sections.  These areas are shown 

superimposed on the corresponding slices from the LONI rat brain dataset.  Only half the dataset 

used for volumetric reconstruction is illustrated in the figure, therefore each slice is separated by 200µ. 
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Figure 14:  Cross-sections used for 3D reconstructions in Long Evans strain after pMCAO. 
Top: Example appearances of normal, granular and core areas in layer II. Scale bar on right panel 
applies to all three panels of the top row. Bottom: Rostral to caudal cross-sections show the 
extent of the granular penumbral (green) and core (red) areas through the MCA territory of a 
representative 4I samples. 

For this particular example, no striatal neurons showed evidence of mRNA granules.  The 

cells of the lateral striatum were shrunken and distorted, appearing similar to the top panel 

marked “core”.  Neurons of the medial striatum had the same appearance as contralateral and 

sham-operated striatal neurons (e.g. as in Figure 13).   This animal also showed a substantial 

fraction of cerebral cortex to have a core phenotype that ran for some distance across all the 

cortical layers, mainly in somatosensory cortex.  However, significant areas of cerebral cortex 

contained neurons expressing cytoplasmic mRNA granules.  These areas were mostly medial to 

the core cortical areas, and were in the watershed area between the MCA and anterior cerebral 

artery territory. 

Using the sequential cross sections, 3D volumes for the penumbra and core phenotypes 

over a range of pMCAO durations were generated (Figure 15).  Quantitative analysis of the 

volumes for the 3D reconstructions from the pMCAO groups are as follows:  at 2hrI, 72.8 ± 

38.5% of the affected volume had mRNA granule containing neurons, and 27.2 ± 38.5% 
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contained distorted and shrunken cells.  However, the relative volume percents did not clear 

statistically.  There was a drop in the relative proportion of the affected volume of neurons 

containing mRNA granules to 15 ± 11.2%, 8.6 ± 8.0% and 0 % for the 4hrI, 6hrI and 8hrI groups 

respectively, and corresponding increases for the volume of core neuron phenotypes.  The 

relative percents for the 4I and 6I groups cleared statistically (ANOVA p < 0.05, Tukey p < 

0.05).  An exponential curve fit of the decrease in relative volume containing mRNA granules 

(Figure 15, blue curve) gave a correlation coefficient (cc) equal to 0.91, whereas a linear fit gave 

a cc of 0.77 (Figure 15, magenta curve).  The exponential drop in mRNA granule-containing 

neuron volume corresponds to expansion of the core into the penumbral region124, as ischemia 

duration increases. 
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Figure 15:  Quantification of mRNA granule-containing volumes in Long Evans pMCAO rats. 
Left: Representative 3D reconstructions from 2, 4, 6 and 8 hr of pMCAO in Long Evans rats.   
Right: Plot of percent affected volume occupied by mRNA granule-containing or core-like 
neurons.  Blue curve is an exponential fit through the penumbral percents, and magenta curve is 
a linear fit. The correlation coefficients (cc) of the respective fits are indicated.  There was a 
statistically significant difference (post hoc p < 0.05) for the relative percents of penumbra and 
core at the 4 hr and 6 hr experimental groups. 

E. Colocalization in Layer II neurons 

In this study, layer II/III mRNA granule forming neurons were assessed for 

colocalization with markers of organelles (Figures 16-22) and mRNA binding proteins (Figures 
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23-28).  Figures 16-28 show staining in the three main MCAO regions: contralateral, penumbral 

and core, the latter two terms used as above.  For these studies the results are shown in terms of 

the merged green and red channel and underneath are the individual green and red channels so 

the patterns of staining in the individual channels can be directly inspected along with the 

merged images.  A summary of the staining patterns of the 13 antigens in the contralateral 

neurons and with the mRNA granules is provided in Table 7.  

1. Double IF/pA FISH and Intracellular Organelle markers 

For the contralateral, nonischemic hemisphere, the only organelle marker to show some 

degree of colocalization with pA mRNAs was protein disulfide isomerase (PDI, Figure 16), an 

endoplasmic reticulum (ER) localized enzyme used in the formation of disulfide bond.  This is 

not unexpected, and the overlap of pA and PDI likely reflects the detection of rough ER, in 

which ribosomes are localized on the surface of the ER membrane.  This would bring mRNA 

into close physical proximity to enzymes such as PDI. 

However, in the penumbral neurons, the mRNA granules did not colocalize with PDI 

(Figure 16), GM130 (Figure 17) or TGN38 (Figure 18).  GM130 is a 130 kDa “Golgi marker” 

protein localized to cis-Golgi. The 38 kDa trans-Golgi network marker localizes the trans-Golgi.  

The lack of colocalization indicates mRNA granules are not associated with the internal 

membranes making up the proximal secretory apparatus of the cell.  The mRNA granules did not 

colocalize with cytochrome c oxidase, subunit IV (COX IV), an inner mitochondrial membrane 

protein involved in electron transport (Figure 19).  Nor did they colocalize with α-tubulin (Figure 

20) or with an antisera that detects the heavy (H) and medium (M) weight neurofilament proteins 

(NH-H/M, Figure 21) and thereby do not interact with microtubules or neuronal intermediate 

filaments, respectively.  Unexpectedly, the mRNA granules did colocalize with the widely used 

neuronal marker, NeuN (Figure 22).  “NeuN” is an abbreviation of “neuronal nuclei”, and I used 
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this antiserum as a nuclei marker.  However, we were surprised to observe the NeuN signal 

clearly colocalized with the mRNA granules outside of the nucleus.  In sum, these results 

indicate that mRNA granules do not associate with the organelle markers tested.    

2. Double IF/pA  FISH and mRNA binding proteins 

In the non-ischemic contralateral neurons, the one mRNA binding protein that strongly 

colocalized with cytoplasmic pA was ribosome p antigen (RPA, Figure 23) a marker of the large 

60S ribosomal subunit112.  Similar to S6, such colocalization would be expected to reflect mRNA 

associated with translating ribosomes.  The only other markers that showed colocalization with 

pA in the contralateral neurons were TIA-1 and pp32.  This colocalization occurred in the form 

of small punctate spots in the cytoplasm.  Based on Foaz Kayali’s work101, we now know the 

TIA-1/pA spots in the cytoplasm are stress granules.   

For the penumbral layer II neurons, the mRNA granules did not colocalize with RPA just 

as they did not colocalize with S6 (e.g. see pA/S6 co-stains in Figure 12 and Figure 13).  Thus, 

the mRNA granules are sequestered away from the entire ribosome, both 40S and 60S subunits. 

The mRNA granules colocalized with HuR, an mRNA binding protein (Figure 24), but did not 

colocalize with the HuR cofactors APRIL and pp32 (Figures 25 and 26, respectively).  ARPIL 

and pp32 are involved in the nuclear to cytoplasmic mRNA transport function of HuR113.  The 

mRNA granules did not colocalize with the stress granule marker, TIA-1 either (Figure 27), 

ruling out the possibility of being stress granules.  Lastly, there was no colocalization of the 

mRNA granules with TTP, an mRNA destabilizing protein that is associated with degradative 

processing bodies.114  Based on the results here, mRNA granules that form following focal 

ischemia behave the same as those that occur following global ischemia102, binding well-known 

mRNA binding proteins and sequestering mRNA away from ribosomal machinery. 

Finally, it is striking that for each antigen studied, there is a decrease in protein antigen 
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staining in core neurons.  Technically, this cannot be due to interference by the poly(T) probe 

because the FISH procedure is performed after the IF procedure.   

Contralateral Ipsilateral penumbra Ipsilateral core
merge

p(A) -green

PDI - red

10 m

 
Figure 16:  Layer II colocalization studies in Long Evans for pA & PDI. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and PDI (protein disulfide 
isomerase), a marker of the endoplasmic reticulum (red channel) in layer II of cerebral cortex 
following 2 hrs permanent MCAO ischemia.  Images taken from coronal section approximately 1 
mm anterior to Bregma using the coordinates of Paxinos and Watson (1998).  Scale bar in lower 
right panel is 10 microns and applies to all panels. 
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Figure 17:  Layer II colocalization studies in Long Evans for pA & GM130. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and GM130, a marker of the 
cis-Golgi Apparatus (red channel) in layer II of cerebral cortex following 2 hrs permanent 
MCAO ischemia.  Images taken from coronal section approximately 1 mm anterior to Bregma 
using the coordinates of Paxinos and Watson (1998).  Scale bar in lower right panel is 10 
microns and applies to all panels. 
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Figure 18:   Layer II colocalization studies in Long Evans for pA & TGN38.  
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and TGN38, a marker of the 
trans-Golgi Network (red channel) in layer II of cerebral cortex following 2 hrs permanent 
MCAO ischemia.  Images taken from coronal section approximately 1 mm anterior to Bregma 
using the coordinates of Paxinos and Watson (1998).  Scale bar in lower right panel is 10 
microns and applies to all panels. 
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Figure 19: Layer II colocalization studies in Long Evans for pA & COX IV. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and COX IV (cytochrome c 
oxidase, subunit 4), a marker of the mitochondria (red channel) in layer II of cerebral cortex 
following 2 hrs permanent MCAO ischemia. Images taken from coronal section approximately 1 
mm anterior to Bregma using the coordinates of Paxinos and Watson (1998).  Scale bar in lower 
right panel is 10 microns and applies to all panels. 
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Figure 20:  Layer II colocalization studies in Long Evans for pA & α-tubulin. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and α-tubulin, one of the 
main proteins of the microtubule component of the cytoskeleton (red channel) in layer II of 
cerebral cortex following 2 hrs permanent MCAO ischemia. Images taken from coronal section 
approximately 1 mm anterior to Bregma using the coordinates of Paxinos and Watson (1998).  
Scale bar in lower right panel is 10 microns and applies to all panels. 
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Figure 21:  Layer II colocalization studies in Long Evans for pA & neurofilaments H and M. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and neurofilaments H and 
M (NF-H/M), a marker of the intermediate filament component of the cytoskeleton (red channel) 
in layer II of cerebral cortex following 2 hrs permanent MCAO ischemia. Images taken from 
coronal section approximately 1 mm anterior to Bregma using the coordinates of Paxinos and 
Watson (1998).  Scale bar in lower right panel is 10 microns and applies to all panels. 
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Figure 22:  Layer II colocalization studies in Long Evans for pA & NeuN. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and NeuN, a marker of 
neuronal nuclei (red channel) in layer II of cerebral cortex following 2 hrs permanent MCAO 
ischemia. Images taken from coronal section approximately 1 mm anterior to Bregma using the 
coordinates of Paxinos and Watson (1998).  Scale bar in lower right panel is 10 microns and 
applies to all panels. 
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Figure 23:  Layer II colocalization studies in Long Evans for pA & RPA. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and RPA, a marker of the 
large ribosomal subunit 60S (red channel) in layer II of cerebral cortex following 2 hrs 
permanent MCAO ischemia. Images taken from coronal section approximately 1 mm anterior to 
Bregma using the coordinates of Paxinos and Watson (1998).  Scale bar in lower right panel is 
10 microns and applies to all panels. 
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Figure 24: Layer II colocalization studies in Long Evans for pA & HuR. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and HuR, an mRNA 
binding protein that stabilizes adenine and uridine rich element (ARE)-containing mRNAs, in 
layer II of cerebral cortex following 2 hrs permanent MCAO ischemia.  Images taken from 
coronal section approximately 1 mm anterior to Bregma using the coordinates of Paxinos and 
Watson (1998).  Scale bar in lower right panel is 10 microns and applies to all panels. 
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Figure 25: Layer II colocalization studies in Long Evans for pA & APRIL. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and APRIL (acidic protein 
rich in lysine), a HuR accessory protein (red channel) in layer II of cerebral cortex following 2 
hrs permanent MCAO ischemia.  Images taken from coronal section approximately 1 mm 
anterior to Bregma using the coordinates of Paxinos and Watson (1998).  Scale bar in lower right 
panel is 10 microns and applies to all panels. 
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Figure 26: Layer II colocalization studies in Long Evans for pA & pp32. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and pp32 (red channel), a 
HuR accessory protein involved in mRNA nuclear export in layer II of cerebral cortex following 
2 hrs permanent MCAO ischemia.  Images taken from coronal section approximately 1 mm 
anterior to Bregma using the coordinates of Paxinos and Watson (1998).  Scale bar in lower right 
panel is 10 microns and applies to all panels. 
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Figure 27: Layer II colocalization studies in Long Evans for pA & TIA-1. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and TIA-1 (red channel) , a 
canonical component of stress granules in layer II of cerebral cortex following 2 hrs permanent 
MCAO ischemia.  Images taken from coronal section approximately 1 mm anterior to Bregma 
using the coordinates of Paxinos and Watson (1998).  Scale bar in lower right panel is 10 
microns and applies to all panels. 
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Figure 28:  Layer II colocalization studies in Long Evans for pA & TTP. 
Double FISH/IF for poly-adenylated mRNAs [p(A), green channel], and TTP (red channel), an 
enzyme involved in mRNA degradation and localized to processing bodies,  in layer II of 
cerebral cortex following 2 hrs permanent MCAO ischemia.  Images taken from coronal section 
approximately 1 mm anterior to Bregma using the coordinates of Paxinos and Watson (1998).  
Scale bar in lower right panel is 10 microns and applies to all panels. 
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Table 7:  Summary of mRNA granule colocalization in Long Evans rats with pMCAO.   

 Antigen Marker of 
CL with pA in 
contralateral  
cytoplasm 

CL with 
mRNA 

granules 

Figure 
No. 

PDI 
Endoplasmic 
reticulum partial No 16 

GM130 Cis-Golgi No No 17 

TGN38 Trans-Golgi No No 18 
Cytochrome C 
oxidase subunit 
IV 

Mitochondria No No 19 

α-tubulin Microtubules No No 20 

 

Neurofilament 
H/M 

Intermediate 
filaments No No 21 

 NeuN Nucleus No Yes 22 

Ribo P antigen 60S subunit Yes No 23 

HuR mRNA BP No Yes 24 

APRIL HuR cofactor No No 25 

pp32  HuR cofactor Minor, punctate No 26 

TIA-1 Stress granules Minor, punctate No 27 

 

TTP Processing 

bodies 

No No 27 

CL, colocalization. Other abbreviations as defined in the text. 
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CHAPTER FOUR: Effect of Diabetes - Methods and Results 

I. Rationale 

The systematic characterization of mRNA granule formation as a function of pMCAO 

duration in the Long Evans rat strain described in the previous chapter laid the framework to 

study the effect of diabetes on mRNA granule formation during focal cerebral ischemia.  

Combining the well-known fact that diabetes worsens outcome after focal ischemia with the new 

insight obtained from the time course and 3D distribution of neurons containing mRNA granules 

as a function of pMCAO duration described in Chapter 3 (Figure 15), it seemed reasonable to 

anticipate that diabetes might serve to accelerate the time course such that cessation of mRNA 

granule formation occurred at an earlier duration of pMCAO than the 8 hr pMCAO in the non-

diabetics.  I therefore repeated the design of the experimental groups in Chapter 3, but shortened 

the time course of pMCAO to cover the range 30 min to 6 hrs.  Quite unexpectedly, this change 

did not make a difference to the results.  As we describe in this chapter, diabetes completely 

inhibited mRNA granule formation in neurons during pMCAO. 

II. Materials 

STZ was purchased from Sigma Chemical Co. (St. Louis, MO). All other materials used 

were previously described in Chapters 2 and 3. 

III. Methods   

A. Animal model 

An insulinopenic model of diabetes was induced in 8-week old male Long Evans rats by 

a single intraperitoneal (IP) injection of STZ (50 mg/kg dissolved in 0.1 mM sodium citrate, pH 

4.5)104,115.  Left hind limb saphenous vein blood samples were collected one week after STZ 

injection and plasma glucose was determined using an Accu-Chek® Advantage glucometer 

(Roche Diagnostics, Indianapolis, IN).  Diabetes was defined by a blood glucose > 300 mg/dl, 
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with animals being used 4-6 weeks later without insulin supplements.  Average blood glucose for 

the STZ-treated rats at the time of MCAO was 437 mg/dL ± 49.5. Unilateral focal brain ischemia 

was induced using the same model of MCAO described in Chapter 2.  Diabetic experimental 

groups are listed in Table 8.  NIC-d is the sham operated diabetic rats not subject to MCAO. 

Table 8: Diabetic Long Evans experimental groups. 
Experimental Group Ischemia Reperfusion n 

NIC-d  - - 3 
0.5I-d 30 min - 4 
1I-d 1hr - 4 
2I-d 2 hr - 4 
4I-d 4hr - 4 
6I-d 6hr - 4 

B. TTC staining 

TTC staining was performed as described in Chapter 2.  Only the 6I-d group was stained.  

C. Immunofluorescence (IF) and Fluorescent in situ hybridization 

Double-labeling PABP IF and pA FISH were performed as described in Chapter 2. 

D. Volumetric reconstruction of pA staining 

3D reconstruction of the brain following diabetes plus pMCAO 

was performed exactly as described in Chapter 3. 

IV. Results 

A. TTC staining 

TTC staining was used to evaluate infarct volume in 

insulinopenic, chronically diabetic male Long Evans rats.  Representative 

samples are shown in Figure 29. The NIC-d showed normal, deep red 

TTC staining, as did the 6I-d group.  Since no infarct was observed in the 

6I-d group, earlier time points of pMCAO were not tested for TTC 

staining. Figure 29:  TTC staining in diabetic Long Evans rats following 6 hr pMCAO. 
Figure 29 : TTC staining in 
diabetic Long Evans rats 
following 6 hr pMCAO 
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B. Animal condition and mRNA granule frequency  

Diabetic animals had average blood glucose of 437 ± 49.5 mg/dl and average weight loss 

of 4.57 ± 0.53 grams.  This weight loss was not different from the variance of non-diabetic Long 

Evans used in Chapter 3. Three of the animals displayed muscle wasting and two of them 

developed cataracts. 

Following histological examination of pA FISH/PABP IF stained slides no mRNA 

granules were detected in any neurons in any diabetic pMCAO group.  The diabetic animals 

showed only shrunken and distorted, core-like areas of pA/PABP staining (data not shown, but 

essentially identical to Figure 14, top panel, core sample).  Therefore, extensive colocalization 

studies such as described in Chapters 2 and 3 could not be performed. 

C. Volumetric analysis 

Volumetric analysis was performed as previously described in Chapter 3.  Using the 

sequential cross sections, 3D volumes for the distorted/shrunken core neuronal phenotype of the 

experimental groups was generated (Figure 30).   As indicated above, no mRNA granules were 

observed in neurons at any pMCAO duration, and therefore, reconstructed volumes show only 

the volumes of shrunken distorted neurons in red.  Unlike the non-diabetics, some of the diabetic 

samples showed shrunken distorted neurons in the contralateral hemisphere and representative 

samples are shown for the 4I-d and 6I-d samples in Figure 30.  One of the 1I-d samples and two 

each of the 4I-d and 6I-d samples showed bilateral damage.  The volume of shrunken/distorted 

neurons in the contralateral hemisphere did not exceed 10% of the total affected volume. 

 Since no mRNA granules formed in neurons of diabetic MCAO animals, relative 

volumes could not be calculated.  Instead, the “absolute” percent of affected brain was taken as 

the volume of core divided by the volume of one hemisphere of the LONI dataset and is plotted 

in Figure 30 (brown curve).  In the 0.5I-d group, 27.7 ± 6.5% of the hemisphere volume had 
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shrunken/distorted neurons and this increased to 40.1 ± 9.0%, 46.9 ± 14% and 49.2 ± 17% at 1I, 

4I and 6I, respectively.  There was no statistical difference amongst the diabetic 1I, 4I and 6I 

groups, however, the 0.5I-d group differed statistically from the aforementioned groups 

(ANOVA p = 0.044, Tukey post hoc p = 0.032). 

Also shown on the plot of Figure 30 is the percent of the LONI hemisphere volume taken 

up by the sum of the non-diabetic mRNA granule and non-diabetic core volumes (which had 

been shown as relative percents in Figure 15).  When summed in this fashion the 1I, 2I, 4I and 8I 

percents of the LONI volume were 50.0 + 26.9 %, 60.6 + 15.8 %, 68.7 + 11.3 %, and 63.7 + 0.0 

%, respectively.  None of these summed volumes cleared statistically.  Further, when an 

ANOVA was run comparing the 2I and 4I pMCAO time points between the diabetic and non-

diabetic samples, these did not clear statistically (ANOVA p = 0.327). 
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Figure 30:  3D reconstructions following pMCAO in diabetic rats. 
Left: Representative 3D reconstructions of volumes of tissue containing shrunken/distorted 
neurons as identified by PABP/pA IF/FISH.  Right: Percent of one hemisphere of the LONI 
dataset occupied by the core volume in diabetics (brown curve) or the core plus mRNA granule-
containing volumes of the non-diabetics (cyan curve).  The red and green curves are the averages 
of the volumes of the core and mRNA granule volumes, respectively, that are summed together 
to form the cyan curve.  Red and green curves are shown for reference, and are shown without 
error bars to minimize distractions on the chart.  Error bars on the cyan curve are the combined 
errors of the sum of the red and green curves. * Post hoc p < 0.05 for 0.5I-d compared to other 
diabetic groups. 
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There are two interesting conclusions drawn from the plot in Figure 30.  First, diabetes 

did not increase the total volume of tissue affected by the pMCAO.  The total volumes in both 

the diabetic and non-diabetic samples converged to roughly 50% of the reference volume, which 

was taken as one hemisphere of the rendered LONI dataset.  Instead, and contrary to my 

hypothesis, diabetes did not increase the extent of injury after MCAO; it completely inhibited 

formation of the mRNA granules at any time point of MCAO. 

Second, when the non-diabetic data is expressed as a percent of the reference volume, the 

sum of the mRNA granule-containing volume and the core volumes was essentially constant.  As 

can be seen from the red and green lines on the plot of Figure 30, there was an exponential 

conversion of the mRNA granule containing volume to core volume as the duration of pMCAO 

increased. 
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CHAPTER FIVE:  Discussion 

I. Summary of Results 

In the previous chapters I have described my studies assessing the histology of pA 

mRNAs in the rodent brain following focal ischemia.  My main findings were: 

1. In Wistar rats no infarct was detected out to 7 days reperfusion after 2 hr MCAO.  

Granulation of mRNA was sporadic and occurred at low frequency only in the 2I samples 

and was unaffected by anesthetic. The mRNA granules detected had the colocalization 

properties seen after global brain ischemia102. 

2. The frequency of mRNA granule-containing neurons was much greater in the Long Evans 

rat strain in the 2I group compared to the Wistar strain.  Following 2 hr MCAO and 24 hr 

reperfusion, Long Evans rat brains showed a necrotic core. 

3. The mRNA granules in the Long Evans rats following pMCAO… 

a. Were detected in layers II/III, V and VI of cerebral cortex, and striatum, and 

they occurred in ipsilateral penumbra. 

b. Had the colocalization properties seen after global brain ischemia102. 

c. Did not colocalize with markers of ribosomal subunits or organelles but did 

colocalize with NeuN. 

d. Decreased in frequency with increased during of pMCAO and were not 

detected in the 8I group. 

4. The volume occupied by mRNA granule-containing neurons transformed into a core-like 

shrunken and distorted neuronal phenotype with increased duration of pMCAO. 

5. Diabetes inhibited formation of mRNA granules in neurons at all durations of pMCAO 

tested. 

6. The volume of tissue showing distorted/shrunken neurons in diabetic samples approached 
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the same volume of core tissue in non-diabetics with increased duration of pMCAO. 

In this chapter I will discuss the significance of these findings with respect to other 

studies in the literature and also with respect to new insights they provide about the response of 

the brain to focal ischemia and the response of the diabetic brain to focal ischemia. 

II. Differences between Rat Strains 

To begin, there was a striking difference in the way the Wistar and Long Evans rats 

responded to MCAO ischemia. Previous studies from other labs indicate a number of factors that 

would predispose the Wistar strain to be more resistant to a given ischemic stimulus compared to 

the Long Evans strain. 

A. Strain Differences in Outcome 

Wistar rats, compared to other common laboratory rat strains, were shown to have a 

greater number of MCA-ACA anastomoses or collaterals106.  Collateral flow becomes important 

during focal ischemia to compensate in regions downstream of a focal occlusion124 to increase 

blood flow to core and penumbra116.  The importance of collateral flow was demonstrated by 

Oliff et al. who showed that when collateral flow was reduced by bilateral CCA occlusion, there 

was a significant increase in the mean cortical infarct volume116,124.  In addition, subcortical 

regions like the striatum receive blood supply almost exclusively from the lateral striate arteries 

that originate from the MCA.  Since these arteries are end-arterioles, the caudate-putamen does 

not receive sufficient collateral blood flow to keep the tissue viable following MCAO106.  Most 

of the strain difference findings suggest that variations in outcome of focal ischemia may not be 

a technical issue, but may have to do with the type of animals used116.  Thus, increased collateral 

blood flow is one explanation of why Wistar rats were more resistant to focal ischemia compared 

to Long Evans rats106,116. 

In addition to vascular anatomical differences, using laser Doppler flowmetry, Long 
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Evans rats demonstrated a more persistent and pronounced stable drop in cortical local cerebral 

blood flow (LCBF)  (74.6 ± 8.9%)  following 60 minutes of transient MCAO when compared to 

Wistar rats (49.0 ± 21.9%)117.  The differences in blood flow could not be fully accounted for by 

anatomical differences in the vasculature and these authors speculated that intrinsic blood flow 

regulatory mechanisms may be more robust in the Wistar strain. 

Factors such as these, allowing Wistars to maintain a higher blood flow during the 

MCAO period, could explain why, after 2 hr MCAO, the Wistar rat failed to show an infarct 

even out to 7 days reperfusion and the Long Evans strain showed an infarct at 24 hr reperfusion. 

B. Strain Differences in mRNA granule Formation 

The studies described above can also be used to explain why the incidence of mRNA 

granule formation was so much less in the Wistar compared to the Long Evans rats. Work from 

Hossmann’s lab has measured many different metabolic and functional thresholds that occur at 

specific decrements of cerebral blood flow (CBF)124.  For example, CBF must decrease below 

20% for ATP levels to drop precipitously and for neurons to dissipate ion gradients118.   

Hossmann has documented that the threshold for TA occurs at ~ 50% reduction in CBF119.  

Based on the CBF study conducted by Prieto et al117, CBF during MCAO averages around 50% 

in the Wistar, but averages around 30% for the Long Evans.  Thus, the Wistar, on average, 

hovers at the threshold of TA onset, but the Long Evans is substantially below the 50% CBF 

threshold.  Formation of mRNA granules has been shown to be a morphological correlate of 

TA102, specifically because mRNA is sequestered away from ribosomal subunits.  Therefore, the 

same explanation for improved outcome in the Wistar strain also provides a plausible 

explanation for the relative lack of mRNA granule formation following MCAO in this strain.  

Although protein synthesis was not directly measured in the studies described here, my results 

lead to the prediction that there would not be a cessation of protein synthesis in the Wistar brain 
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at least out to 2 hr MCAO and for any subsequent reperfusion duration.  Indirect support for this 

prediction from the present studies was that I observed the successful translation of HSP70 

protein in the Wistar strain at various durations of reperfusion (Figure 9).  It is well documented 

that HSP70 translation does not occur in neurons destined to die by DND in both focal and 

global brain ischemia models, specifically because of the prolonged TA1,86. 

III. mRNA Granules in Focal Ischemic Neurons 

 Our previous study showed mRNA granules form following global brain ischemia102.  

The present study is the first demonstration of mRNA granule formation following focal brain 

ischemia.  I performed extensive colocalization studies (Figure 12 and Figure 13) in order to 

determine if the mRNA granules that formed following focal ischemia were the same as those in 

the global model.  Furthermore, I have extended the colocalization studies beyond those we 

published in the global model to assess cell organelles and additional mRNA binding proteins 

(Figures 16-28). 

As stated above, the mRNA granules seen after MCAO failed to colocalize with the 40S 

and 60S ribosomal subunits.  Presently, this is their most important characteristic as it provides 

an explanation for what has been an outstanding unresolved problem in the field, which is the 

cause of prolonged TA in post-ischemic brain neurons.  

However, the additional colocalization studies begin to address more specifically what 

the mRNA granules are, and are not.  They did not colocalize with markers of the ER or for cis- 

and trans-Golgi network.  Thus, even though the mRNA granules are intimately involved with 

the translational system, they are not involved in the main proximal secretory systems for 

secreted and membrane localized protein synthesis.  I also tested two markers of the 

cytoskeleton: -tubulin and neurofilament proteins H/M.  The lack of colocalization indicates the 

mRNA granules are not formed in association with microtubules or intermediate filaments.  I had 
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tried several actin antibodies to look at the actin system, but was unable to get any of the tested 

actin antibodies to work in the FISH/IF double labeling procedure.  Thus, the association of 

mRNA granules with the microfilament system is unresolved by my studies.  The mRNA 

granules also did not colocalize with COX IV, a mitochondrial marker.  Therefore, my studies 

rule out these organelle systems as playing a direct role in mRNA granule function. 

Similar to the results with global brain ischemia102, the mRNA granules did not 

colocalize with TIA-1 or TTP and therefore are not stress granules or processing bodies. They 

did colocalize with the known mRNA binding proteins PABP and HuR.  Thus, the mRNA 

granules observed in the focal model are very similar to, if not identical to, those observed 

following global brain I/R. 

However, one surprising finding was the colocalization of the cytoplasmic mRNA 

granules with NeuN, a neuronal nuclei marker.  A recent study identified NeuN as the sequence-

specific mRNA splicing factor Fox-3.  Fox-3 is a component of nuclear speckles, which are 

morphological structures of the nuclear transcription and mRNA processing machinery that 

interacts with the nuclear matrix120.  That NeuN has been identified as a protein involved in 

nuclear mRNA processing is consistent with our observation that NeuN colocalized in the 

mRNA granules.  Furthermore, our result suggests that NeuN may function similarly to TIA-1, 

TTP and HuR, all of which are nuclear proteins involved in mRNA processing, but which 

translocate to the cytoplasm during cell stress and play roles in the ribonomic systems76-81. 

Since the mRNA granules colocalized with HuR, we tested two proteins known to 

function with HuR during the heat shock response: APRIL and pp32.  Both of these proteins 

bind to and complex with HuR and its client mRNAs to mediate nuclear to cytoplasmic 

translocation of mRNAs upregulated during heat shock79,80.  The logic of testing APRIL and 

pp32 was that if they colocalized with HuR and the mRNA granules, it would suggest all three 
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proteins were playing a role in the nuclear export of mRNAs.  However, neither APRIL or pp32 

colocalized in the mRNA granules, and this suggests HuR may be mediating a function different 

from that identified by the Steitz lab79.  

To summarize the colocalization studies, the mRNA granules detected after MCAO share 

the same characteristics as those seen after global ischemia, indicating they are likely the same 

structures.  Further, the mRNA granules are not substantially colocalized with organelles but 

only select mRNA binding proteins. 

IV. Time Course of mRNA granules in pMCAO 

The observation that the relative proportions of mRNA granule-containing neurons 

decreased with pMCAO (plot, Figure 15), but that the sum of the volumes of mRNA granule-

containing plus core-like neurons remained constant with pMCAO duration (plot, Figure 30) is 

one of the significant findings of my work.  This observation is relevant to how penumbral 

neurons convert to core neurons and my findings contribute new insights to how this occurs.   

As stated in the Background, rescuing the penumbra in an effort to improve outcome 

following an ischemic event is the goal of stroke research.  There are two general approaches to 

stroke therapy.  Therapies that induce reperfusion have had some success via surgical techniques 

and with application of tissue plasminogen activator (tPA).  But even tPA usage occurs at the 

risk of hemo-compromising patients121. Neuroprotective strategies to halt the cause of cell death 

of penumbral neurons have been spectacular failures: every single one of over 100 clinical trials 

of stroke neuroprotection have failed122,123.  Thus, the new insights into how potentially 

salvageable penumbral neurons convert to core-like neurons irreversibly committed to die are 

significant for the possibility of offering new neuroprotective strategies in the long run.   

There are different mechanisms of penumbra-core conversion whether focal ischemia is 

transient or permanent, and whether the ischemia is occlusive or hemorrhagic124.  Since I only 
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investigated permanent occlusive focal ischemia, my work applies only to this case.  

The two images shown in Figure 31 are taken from a 2009 review by Hossmann on the 

pathophysiology of stroke injury and show the changes in the brain following pMCAO.  The plot 

in Figure 31A shows how blood flow changes throughout the core area as a function of pMCAO 

duration.  CBF is initially at its lowest, but increases somewhat as collateral circulation 

compensates for the occlusion. It should be noted he shows CBF to decrease to zero, but above I 

discussed that the average CBF decreases during rodent MCAO range from ~ 20-50% normal 

CBF. 

The plot in Figure 31B shows the evolution of the infarct core with pMCAO duration.  It 

can be seen how this rapidly increases and is almost maximum at 3 hr pMCAO and is maximum 

by 6 hr pMCAO.  I have added to Figure 31B the curve of my results of the decrease in the 

volume of tissue where the neurons contained mRNA granules (green curve).  It is striking that 

the decrease in mRNA granules is roughly a mirror image of the evolution of the infarct core.  

This decrease occurs in spite of the minor increase in CBF shown in the plot in A.  Thus, the loss 

of ability of neurons to form mRNA granules directly correlates with production of infarct core. 

It is also significant that I observed a rapid loss of mRNA-granule containing neurons 

between 2 and 4 hr pMCAO.  This is precisely the time window that Hossmann has indicated as 

“therapeutic window” on his plot in Figure 31B.  This correspondence would suggest that if we 

understood exactly why the neurons lost the ability to form mRNA granules with increased 

pMCAO duration, that this might be an important therapeutic target, and perhaps extend the 

duration of the “therapeutic window” shown in Dr. Hossmann’s graph. 
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Figure 31: Changes in blood flow and core evolution during pMCAO.  Adapted from 124. 

 
V. Inhibition of mRNA Granulation by Diabetes 

It was an unexpected finding that diabetes led to a complete inhibition of mRNA granule 

formation.  It is well known that chronic diabetes causes a plethora of complications all of which 

have a negative impact on stroke outcome.   These can be classified into three general categories: 

immunological, vascular and cellular.  Each could plausibly contribute to the inhibition of the 

mRNA granules. 

There is a series of processes in the inflammatory response that are associated with post-

ischemic reperfusion that exacerbate brain injury even when diabetes is not present115.    Chronic 

diabetes induces exaggerated inflammatory responses to brain I/R due to increase in leukocyte 

adhesion and emigration mediated by CD11/CD18-ICAM-1 and P-selectin and albumin 

leakages125.  Matrix metalloproteinases (MMP), which are involved in the physiological turnover 

of the extracellular matrix, contribute to blood brain barrier leakage and cellular damage 

following focal brain I/R.  MMP-2 and MMP-9 have been implicated in cerebral ischemia. 

MMP-9 is normally absent in brain but upregulated in response to injury.  Early inhibition of 

MMP-9 led to reduction in infarct size at two weeks following permanent MCAO125.  Such 
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adverse inflammatory responses would converge to create an extracellular environment that 

would upset the highly specific conditions required for neuronal function.  In this way, 

inflammatory factors would serve to generally decrease neuronal fidelity, and this may 

contribute to diabetes inhibition of mRNA granule formation. 

There is an increased risk of endothelial cell dysfunction and vascular smooth muscle 

impairment associated with chronic diabetes.19  Diabetics were also shown to have impaired 

endothelium-dependent, nitric oxide-mediated vasodilation126.  Hyperglycemia inhibits the 

production of nitric oxide via eNOS activation, thus blocking a potent vasodilator.  Furthermore, 

when diabetes is present, there is also an increase in the production of vasoconstrictors, such as 

endothelin-1127.  Studies have also shown impairment in collateral recruitment in chronic 

diabetes.128.  Such vascular abnormalities in chronic diabetes may also contribute to the 

inhibition of mRNA granules in penumbral neurons, following diabetic MCAO.  The vascular 

abnormalities would collectively serve to increase the intensity of the ischemic insult following 

MCAO, rendering the neurons incapable to respond properly to stress and leading to a greater 

volume of core-like neurons. 

Finally, diabetes alters intracellular conditions in generally adverse ways.  Examples 

include: decreased pH of the cytoplasm129, increased production of free radical species130,131, 

inhibition of the oxidative phosphorylation of mitochondria132, and the activation of the intrinsic 

apoptotic pathways96,104.  All of these are direct forms of damage inside the neuron, and as such, 

they could converge to inhibit the molecular mechanism of mRNA granule formation.  For 

example, one could hypothesize that some crucial or rate limiting component needed for the 

formation of the mRNA granules is damaged by oxidative stress, or altered intracellular pH, 

rendering them inactive.  Another possible mechanism is that some crucial component of the 

mRNA granules is a substrate of caspase 3 and degraded.   
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Thus, there are a number of plausible, experimentally testable hypotheses as to why 

diabetes inhibits mRNA granule formation. 

VI. Limitations of the Present Studies 

There are several limitations of the present study. 

1. On one hand, the present study could be considered to be purely descriptive.  There were 

no drug interventions or genetic knockouts used in the present work in the attempt to 

establish mechanism by the currently acceptable route.  On the other hand, a histological 

demonstration that mRNA does not colocalize with ribosomal subunits is itself a 

mechanism of TA, one that has eluded 40 years of biochemical and molecular biological 

studies on ischemic brains.  Whether one frames the present work as descriptive or 

mechanistic, it has clearly identified new phenomena that open up new and clinically 

important lines of research into two of the biggest clinical problems today: stroke and 

diabetes. 

2. No attempt was made to ascertain information about molecular mechanisms of the 

formation or the function of the mRNA granules.  However, that diabetes inhibits their 

formation provides a system that can be used in the future to begin to address the 

mechanisms of their formation. 

3. As described in the previous section, diabetes leads to a large number of possible 

mechanisms for the inhibition of mRNA granule formation.  The present studies did not 

investigate any of these. 

VII. Future Directions 

Future directions follow directly from the limitations of the present study: 

1. Seek information about the molecular mechanisms of mRNA granule formation, and 

about their role and function in the neurons of the ischemic and reperfused brain.  Some 
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ways to begin to move in this direction would be to use specific pharmacologic agents or 

to use genetic knockouts to assess the role of specific proteins in either mRNA granule 

formation of function.  For example, as described in Background, Ca2+ ion is a critical 

trigger for many subsequent molecular changes in the neurons after ischemia.  Calcium 

channel blockers or NMDA antagonists could be used to determine if Ca2+ also plays an 

upstream role in mRNA granule formation.  Another example would be to administer 

agents that directly alter the translational system.  For example, cycloheximide is a well 

known protein synthesis inhibitor whose mode of operation is to prevent polysomes from 

dissociating. Since it is well known that polysomes dissociate in neurons after I/R, would 

preventing their dissociation with cycloheximide alter mRNA granule formation?  

Genetically altered mice could also be used in a similar fashion to test the role of specific 

proteins. 

2. The present work studied specifically mRNA granules after pMCAO.  Now that the time 

course of mRNA granule formation in pMCAO has been identified, the next step is to 

study a time course of transient MCAO, and assess the mRNA granules and how they 

correlate with outcome.  For example, I can now predict that following 2hr MCAO, there 

should be mRNA granules for at least some duration of subsequent reperfusion.  

However, following 8 hr MCAO, there should be no mRNA granules at subsequent 

reperfusion durations. 

3. Another future direction is to begin to study specific adverse effects of diabetes to see 

which may be involved in the inhibition of mRNA granule formation.   Some of these 

effects can be separated from diabetes, such as hyperglycemia.   

VIII. Summary and Conclusions 

I had hypothesized that mRNA granules form in brain after focal ischemia.  My research 
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showed how this phenomenon is dependent on the strain used, which, based on information from 

the literature, was related to blood flow rates during MCAO, and hence the amount or degree of 

ischemia generated in the different rat strains.  I have contributed new insights into how 

penumbral brain tissue converts to core as ischemia duration increases.  Neurons that might have 

survived at lesser durations of focal ischemia no longer form mRNA granules with increased 

ischemia duration.  Previously this had been understood only in terms of “threshold” 

magnitudes118, but my work begins to identify specific cellular mechanisms mediating this 

conversion in neuronal phenotypes.  Finally, the work reported here discovered the unexpected 

finding that diabetes completely abrogates the mRNA granule response in the neurons of the 

focal ischemic brain.  This adds an additional effect of diabetes on brain that clearly will 

contribute to worsened outcome in the diabetic brain after stroke and opens up a new line of 

investigation into how diabetes exerts adverse affect on ribonomic pathways in neurons. 

As the work I did relied on the work of other researchers before me, I sincerely hope my 

work can be a stepping stone for future studies that will lead to a clear and full understanding of 

the insidious effects of both diabetes and stroke and lead one day to successful treatments that 

can alleviate the pain and suffering of both stroke victims and diabetic patients. 
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Diabetes affects 25 million and stroke affects ¾ million people a year in the USA. 

Diabetes increases the risk of stroke and worsens stroke outcome, but the causes for this are not 

fully known.  Neurons destined to die following brain ischemia undergo a persistent translation 

arrest that prevents successful expression of protective cellular responses.  Recent work has 

revealed the translation arrest following global ischemia is due to sequestration of mRNA in the 

form of mRNA granules away from ribosomal subunits, thereby precluding translation.  I 

hypothesize that mRNA granules form during focal brain ischemia and this effect is worsened in 

diabetics subjected to focal brain ischemia.  MCAO was performed for durations ranging from 2-

8 hr and mRNA granules assessed by fluorescence in situ histochemistry. Long Evans rats 

showed strong mRNA granule formation in penumbra at 2 hr ischemia but not Wistar rats.  In the 

Long Evans strain, the volume of brain containing neurons expressing mRNA granules 

decreased exponentially from 2 to 8 hr focal brain ischemia such that no mRNA granules were 

detected at 8 hr ischemia.  Colocalization studies of mRNA granules with a panel of organelle 

and mRNA binding protein markers showed these to colocalize with PABP, HuR and NeuN.  

mRNA granules did not colocalize with markers of ribosomal subunits, endoplasmic reticulum, 

cis- and trans-Golgi networks, mitochondria, microtubules, intermediate filaments, stress 

granules, processing bodies or the HuR accessory proteins APRIL and pp32.  Diabetes 

completely abrogated the formation of mRNA granules following any duration of focal ischemia 
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tested.  Thus, mRNA granules form in penumbral neurons following focal brain ischemia and 

mediate translation arrest in these neurons.  This response is inhibited by diabetes.  Since mRNA 

granules are part of the ribonomic regulation of neuronal stress responses, their inhibition by 

diabetes provides an additional mechanism whereby diabetes worsens outcome after focal brain 

ischemia. 
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